Identifying factors and predicting the future land-use change of protected area in the agricultural landscape of Malaysian peninsula for conservation planning

2020 ◽  
Vol 18 ◽  
pp. 100298 ◽  
Author(s):  
Nur Hairunnisa Rafaai ◽  
Saiful Arif Abdullah ◽  
Muhammad Imam Hasan Reza
Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Dingrao Feng ◽  
Wenkai Bao ◽  
Meichen Fu ◽  
Min Zhang ◽  
Yiyu Sun

Land use change plays a key role in terrestrial systems and drives the process of ecological pattern change. It is important to investigate the process of land use change, predict land use patterns, and reveal the characteristics of land use dynamics. In this study, we adopted the Markov model and future land use (FLUS) model to predict the future land use conditions in Xi’an city. Furthermore, we investigated the characteristics of land use change from a novel perspective, i.e., via establishment of a complex network model. This model captured the characteristics of the land use system during different periods. The results indicated that urban expansion and cropland loss played an important role in land use pattern change. The future gravity center of urban development moved along the opposite direction to that from 2000 to 2015 in Xi’an city. Although the rate of urban expansion declined in the future, urban expansion remained the primary driver of land use change. The primary urban development directions were east-southeast (ENE), north-northeast (NNE) and west-southwest (WSW) from 1990 to 2000, 2000 to 2015, and 2015 to 2030, respectively. In fact, cropland played a vital role in land use dynamics regarding all land use types, and the stability of the land use system decreased in the future. Our study provides future land use patterns and a novel perspective to better understand land use change.


2016 ◽  
Vol 9 (2) ◽  
pp. 147-156
Author(s):  
Devianti Devianti

Abstrak. Sub Sub DAS Cikujang merupakan salah satu bagian dari Sub DAS Cimanuk hulu yang dapat menyumbang sedimen ke waduk Jatigede yang berasal dari erosi sebagai akibat perubahan penggunaan lahan yang tidak sesuai dengan kondisi fisik lahan. Hasil kajian memperlihatkan  pola perubahan penggunaan lahan di Sub Sub DAS Cikujang periode 1994-2009, terjadi perubahan penggunaan lahan dari kawasan lindung menjadi kawasan budidaya seluas 742,20 ha. Kawasan lindung pada tahun 1994 seluas 3.213,03 ha menurun menjadi 2.470,83 ha pada tahun 2009 dan kawasan budidaya pada tahun 1994 seluas 9.532,41 ha meningkat menjadi 10.274,61 ha pada tahun 2009 dengan laju perubahan 185,55 ha/tahun. Laju penurunan luasan hutan primer mencapai 54,45 ha/tahun, dan pada tahun 2009 tidak terdapat lagi lahan dengan fungsi sebagai hutan primer. Laju penurunan luasan hutan sekunder mencapai 135,90 ha/tahun dari 2.995,25 ha pada tahun 1994 menjadi 2.451,65 ha pada tahun 2009. Pola perubahan penggunaan lahan di Sub Sub DAS Cikujang sebagian besar dipengaruhi dengan pola perubahan hutan primer dan hutan sekunder pada kawasan lindung. Sedangkan pola perubahan penggunaan lahan pada kawasan budidaya dipengaruhi pola perubahan lahan kebun campuran, tegalan/ladang, perkebunan, dan sawah Land-Use Change Pattern in Cikujang Catchment Area Abstract. Cikujang catchment area is one part of the subzone Cimanuk that can contribute sediment upstream reservoirs to Jatigede derived from erosion as a result of changes in land use that is not in accordance with the physical condition of the land. Based on analysis result of land-use change pattern in Cikujang catchment area in 1994 – 2009 period, land-use had changed 742,20ha from protected areas to cultivated areas, where protected area had decreased from 3.213,03ha in 1994 to 2.470,83ha in 2009 and cultivated area had increased from 10.274,61 ha in 1994 to10.274,61 ha in 2009 with changing rate ha/year. The rate of decreasing primary forest area was 54.45ha/year, as a result there was no land function as primary forest in 2009.  The rate of decreasing secondary forest area was 135,90ha/year ranging from 2.995,25ha in 1994 to 2.451,65ha in 2009. Land-use change pattern in Cikujang catchment area dominantly was influenced by changing pattern of protected forest and secondary forest in protected area, but in cultivated area land-use change pattern was influenced by changing pattern of farm, grassland, and rice field.


2016 ◽  
Vol 542 ◽  
pp. 357-372 ◽  
Author(s):  
Gianbattista Bussi ◽  
Simon J. Dadson ◽  
Christel Prudhomme ◽  
Paul G. Whitehead

2020 ◽  
Vol 4 ◽  
Author(s):  
Benjamin P. Bryant ◽  
T. Rodd Kelsey ◽  
Adrian L. Vogl ◽  
Stacie A. Wolny ◽  
Duncan MacEwan ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2866
Author(s):  
Marjolein H. J. Van Huijgevoort ◽  
Bernard R. Voortman ◽  
Sjoerd Rijpkema ◽  
Kelly H. S. Nijhuis ◽  
Jan-Philip M. Witte

Changes in land use and climate have a large influence on groundwater recharge and levels. In The Netherlands, precipitation shifts from summer to winter are expected, combined with an increase in summer temperature leading to higher evaporation. These changes in climate could threaten the fresh water supply and increase the importance of large groundwater reservoirs. Sustainable management of these groundwater reservoirs, therefore, is crucial. Changes in land use could help mitigate the effects of climate change by decreasing the evaporation. In this study, we investigate the effect of changes in climate and land use on a large groundwater reservoir in The Netherlands, the Veluwe, for a historical period (1850–2016) and in the future (2036–2065). During the historical period, evaporation increased due to conversions from heather and drift sand to pine forest across the Veluwe. This change in land use had a larger effect on the groundwater recharge than change in climate over the historical period. In the future, an increase in winter precipitation will lead to higher groundwater levels in the elevated parts of the region. Surrounding areas are more vulnerable to an increase in dry periods in the summer. Groundwater reservoirs provide an opportunity to store water during wetter periods, which could alleviate drought impacts in surrounding regions during dry periods. Land use change, such as conversion from pine forest to other land use types, is a possible measure to increase water availability.


2020 ◽  
Author(s):  
Jing Tian ◽  
Yongqiang Zhang

<p><span>As one of the largest arid and semiarid areas in the world, Central Asia (CA) has been facing severe water crisis. Agricultural irrigation consumes most water resources there. However, it is not clear how the irrigation water requirement (IWR) varies spatially and temporally in CA, especially under CO<sub>2</sub> fertilization and land use change. This study, for the first time, quantifies changes of IWR for two predominant crops (cotton and winter wheat) over CA under two climate change scenarios (RCP2.6 and RCP4.5, both of which consider CO<sub>2</sub> fertilization effects) and land use projections. Our results show that without considering atmospheric CO<sub>2</sub> concentration for estimating IWR would result in large errors and even different signs of the changes. In the future, IWR for cotton and winter wheat tends to increase in 2020s and 2040s but decrease in 2060s and 2080s under RCP2.6 and CO<sub>2</sub> fertilization. The change magnitude is less than 5%. Under RCP4.5 and CO<sub>2</sub> fertilization, most areas in CA exhibit an increase of less than 5%. The maximum increases of 5%-15% for cotton occur in </span><span> Tajikistan</span><span>. The maximum increase of more than 50% for winter wheat occurs in Tajikistan</span> <span>under both climate scenarios. The IWR in Turkmenistan</span> <span>is most sensitive to land use change, with 33% increase compared with IWR in 2015. The other four countries have small differences (less than 10%) between 2015 and 2030. Severe water security pressure is predicted in Turkmenistan</span> <span>and Uzbekistan </span><span>and the smallest in Tajikistan</span><span>. This study provides a comprehensive evaluation of IWR for the Central Asian countries in the future and helps the decision maker for sensible water management.</span></p>


Sign in / Sign up

Export Citation Format

Share Document