scholarly journals Development of Rice Leaves: How Histocytes Modulate Leaf Polarity Establishment

Rice Science ◽  
2020 ◽  
Vol 27 (6) ◽  
pp. 468-479
Author(s):  
Wang Jiajia ◽  
Xu Jing ◽  
Qian Qian ◽  
Zhang Guangheng
2010 ◽  
Vol 64 (2) ◽  
pp. 331-342 ◽  
Author(s):  
Zhenhuan Yuan ◽  
Dexian Luo ◽  
Guang Li ◽  
Xiaozhen Yao ◽  
Hua Wang ◽  
...  

Biology Open ◽  
2016 ◽  
Vol 5 (7) ◽  
pp. 942-954 ◽  
Author(s):  
Yoko Matsumura ◽  
Iwai Ohbayashi ◽  
Hiro Takahashi ◽  
Shoko Kojima ◽  
Nanako Ishibashi ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1456
Author(s):  
Xin Jin ◽  
Can Baysal ◽  
Margit Drapal ◽  
Yanmin Sheng ◽  
Xin Huang ◽  
...  

Light is an essential regulator of many developmental processes in higher plants. We investigated the effect of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1/2 genes (OsHDR1/2) and isopentenyl diphosphate isomerase 1/2 genes (OsIPPI1/2) on the biosynthesis of chlorophylls, carotenoids, and phytosterols in 14-day-old etiolated rice (Oyza sativa L.) leaves during de-etiolation. However, little is known about the effect of isoprenoid biosynthesis genes on the corresponding metabolites during the de-etiolation of etiolated rice leaves. The results showed that the levels of α-tocopherol were significantly increased in de-etiolated rice leaves. Similar to 1-deoxy-D-xylulose-5-phosphate synthase 3 gene (OsDXS3), both OsDXS1 and OsDXS2 genes encode functional 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activities. Their expression patterns and the synthesis of chlorophyll, carotenoid, and tocopherol metabolites suggested that OsDXS1 is responsible for the biosynthesis of plastidial isoprenoids in de-etiolated rice leaves. The expression analysis of isoprenoid biosynthesis genes revealed that the coordinated expression of the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway, chlorophyll, carotenoid, and tocopherol pathway genes mirrored the changes in the levels of the corresponding metabolites during de-etiolation. The underpinning mechanistic basis of coordinated light-upregulated gene expression was elucidated during the de-etiolation process, specifically the role of light-responsive cis-regulatory motifs in the promoter region of these genes. In silico promoter analysis showed that the light-responsive cis-regulatory elements presented in all the promoter regions of each light-upregulated gene, providing an important link between observed phenotype during de-etiolation and the molecular machinery controlling expression of these genes.


Sign in / Sign up

Export Citation Format

Share Document