Remote sensing applications for precision agriculture: A learning community approach

2003 ◽  
Vol 88 (1-2) ◽  
pp. 157-169 ◽  
Author(s):  
Santhosh K Seelan ◽  
Soizik Laguette ◽  
Grant M Casady ◽  
George A Seielstad
Author(s):  
S. Yu. Blokhina

The paper provides an overview of foreign literature on the remote sensing applications in precision agriculture. Remote sensing applications in precision agriculture began with sensors for soil organic matter content, and have quickly advanced to include hand held sensors to tractor or aerial or satellite mounted sensors. Wavelengths of electromagnetic radiation initially focused on a few key visible or near infrared bands, and nowadays electromagnetic wavelengths in use range from the ultraviolet to microwave portions of the spectrum. Spectral bandwidth has decreased dramatically with the advent of hyperspectral remote sensing, allowing improved analysis of crop stress, crop biophysical or biochemical characteristics and specific compounds. A variety of spectral indices have been widely implemented within various precision agriculture applications, rather than a focus on only normalized difference vegetation indices. Spatial resolution and temporal frequency of remote sensing imagery has increased significantly, allowing evaluation of soil and crop properties at fine spatial resolution at the expense of increased data storage and processing requirements. At present there is considerable interest in collecting remote sensing for operational management of soil and crop yields, as well as control over the spread of pests and weeds practically in real time.


Author(s):  
R. A. Oliveira ◽  
E. Khoramshahi ◽  
J. Suomalainen ◽  
T. Hakala ◽  
N. Viljanen ◽  
...  

The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.


Author(s):  
E. Honkavaara ◽  
T. Hakala ◽  
O. Nevalainen ◽  
N. Viljanen ◽  
T. Rosnell ◽  
...  

Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV) and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.


Author(s):  
E. Honkavaara ◽  
T. Hakala ◽  
O. Nevalainen ◽  
N. Viljanen ◽  
T. Rosnell ◽  
...  

Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV) and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.


Sign in / Sign up

Export Citation Format

Share Document