Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use

2011 ◽  
Vol 115 (5) ◽  
pp. 1260-1271 ◽  
Author(s):  
S. Englhart ◽  
V. Keuck ◽  
F. Siegert
Author(s):  
Nidhi Jha ◽  
Nitin Kumar Tripathi ◽  
Nicolas Barbier ◽  
Salvatore G. P. Virdis ◽  
Wirong Chanthorn ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 360
Author(s):  
Wensheng Wang ◽  
Martin Gade ◽  
Kerstin Stelzer ◽  
Jörn Kohlus ◽  
Xinyu Zhao ◽  
...  

We developed an extension of a previously proposed classification scheme that is based upon Freeman–Durden and Cloude–Pottier decompositions of polarimetric Synthetic Aperture Radar (SAR) data, along with a Double-Bounce Eigenvalue Relative Difference (DERD) parameter, and a Random Forest (RF) classifier. The extension was done, firstly, by using dual-copolarization SAR data acquired at shorter wavelengths (C- and X-band, in addition to the previously used L-band) and, secondly, by adding indicators derived from the (polarimetric) Kennaugh elements. The performance of the newly developed classification scheme, herein abbreviated as FCDK-RF, was tested using SAR data of exposed intertidal flats. We demonstrate that the FCDK-RF scheme is capable of distinguishing between different sediment types, namely mud and sand, at high spatial accuracies. Moreover, the classification scheme shows good potential in the detection of bivalve beds on the exposed flats. Our results show that the developed FCDK-RF scheme can be applied for the mapping of sediments and habitats in the Wadden Sea on the German North Sea coast using multi-frequency and multi-polarization SAR from ALOS-2 (L-band), Radarsat-2 (C-band) and TerraSAR-X (X-band).


2003 ◽  
Vol 41 (12) ◽  
pp. 2735-2744 ◽  
Author(s):  
P.A. Wright ◽  
S. Quegan ◽  
N.S. Wheadon ◽  
C.D. Hall
Keyword(s):  
L Band ◽  

2009 ◽  
Vol 64 (5) ◽  
pp. 458-463 ◽  
Author(s):  
Wagner F. Silva ◽  
Bernardo F.T. Rudorff ◽  
Antonio R. Formaggio ◽  
Waldir R. Paradella ◽  
José C. Mura

1997 ◽  
Vol 13 (5) ◽  
pp. 697-708 ◽  
Author(s):  
M. Delaney ◽  
S. Brown ◽  
A. E. Lugo ◽  
A. Torres-Lezama ◽  
N. Bello Quintero

ABSTRACTOne of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in the biomass, soil and necromass for 23 long-term permanent forest plots in five life zones of Venezuela to determine how C was partitioned among these components across a range of environments. Aboveground biomass C ranged from 70 to 179 Mg ha−1 and soil C from 125 to 257 Mg ha−1, and they represented the two largest C components in all plots. The C in fine litter (2.4 to 5.2 Mg ha−1), dead wood (2.4 to 21.2 Mg ha−1) and roots (23.6 to 38.0 Mg ha−1) accounted for less than 13% of the total C. The total amount of C among life zones ranged from 302 to 488 Mg ha−1, and showed no clear trend with life zone. In three of the five life zones, more C was found in the dead (soil, litter, dead wood) than in the live (biomass) components (dead to live ratios of 1.3 to 2.3); the lowland moist and moist transition to dry life zones had dead to live ratios of less than one. Results from this research suggest that for most life zones, an amount equivalent to between 20 and 58% of the aboveground biomass is located in necromass and roots. These percentages coupled with reliable estimates of aboveground biomass from forest inventories enable a more complete estimation of the C content of tropical forests to be made.


Author(s):  
Nicolas Longépé ◽  
Masanobu Shimada ◽  
Sophie Allain ◽  
Eric Pottier
Keyword(s):  
L Band ◽  

Sign in / Sign up

Export Citation Format

Share Document