intertidal flats
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 30)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Zongxiao Zhang ◽  
Ping Han ◽  
Yanling Zheng ◽  
Shuo Jiao ◽  
Hongpo Dong ◽  
...  

Abstract Estuarine intertidal wetlands pertain to habitats with high productivity on Earth. Bacteria in estuarine intertidal soils regulate carbon (C), nitrogen (N) and sulfur (S) cycles. To gain insights into the ecological and metabolic modes possessed by bacteria in estuarine intertidal wetlands, we explored the spatial and seasonal variations of bacterial taxonomic composition, assembly processes, and ecological system functions in surface soils from China’s estuarine intertidal flats through shotgun metagenomic and 16S rRNA gene sequencing. Obvious spatiotemporal dynamic patterns in the bacterial community structure were identified, with more pronounced seasonal rather than spatial variations. Dispersion limitation was observed to act as a critical factor affecting community assembly, explaining approximately half of the total variation in bacterial community. Functional bacterial community structure exhibited a more significant latitudinal change than seasonal variability, highlighting that functional stability of the bacterial communities differed with their taxonomic variability. Identification of biogeochemically related links between C, N and S cycles in the soils showed the adaptive routed metabolism of the bacterial communities and the strong interactions between coupled metabolic pathways. Our study broadens the insights into the taxonomic and functional profiles of bacteria in China’s estuarine intertidal soils from various latitudes and helps us understand the effects exerted by environmental factors or climate-related variations on the ecological health and microbial diversity of estuarine intertidal flats.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2899
Author(s):  
Gang Fu ◽  
Yue Qi ◽  
Junsheng Li ◽  
Caiyun Zhao ◽  
Jing He ◽  
...  

The spatial distributions of nitrogen (N) and phosphorus (P) in surface sediments are of great significance in studying the ecological process of nutrient cycling in intertidal flats. However, little is known about N and P’s spatial distribution in intertidal flats of the Yellow River Delta (YRD). We analyzed the N and P contents in surface sediments and Suaeda glauca density at the low-tidal level to identify the spatial distributions of nutrients and their influencing factors in coastal tidal flat sediments. The results showed that the total nitrogen (TN) and total phosphorus (TP) concentrations in this study were both lower than the background values of China’s shallow sea sediments. The spatial distributions of N and P had significantly spatial heterogeneity, while those of the nutrients at different distances from the low-tidal level to the coastline showed no significant distance effects. The spatial distribution of S. glauca in coastal tidal flats had significant location characteristics and was closely related to the distribution of TN and pH. The TN in non-estuarine intertidal flats was less than that in estuaries; in contrast, the TP was higher in non-estuaries. There are some differences of N and P between estuary and non-estuary areas.


2021 ◽  
Vol 8 ◽  
Author(s):  
Christian Jordan ◽  
Jan Visscher ◽  
Torsten Schlurmann

This study explores the projected responses of tidal dynamics in the North Sea induced by the interplay between plausible projections of sea-level rise (SLR) and morphological changes in the Wadden Sea. This is done in order to gain insight into the casual relationships between physical drivers and hydro-morphodynamic processes. To achieve this goal, a hydronumerical model of the northwest European shelf seas (NWES) was set-up and validated. By implementing a plausible set of projections for global SLR (SLRRCP8.5 of 0.8 m and SLRhigh−end of 2.0 m) by the end of this century and beyond, the model was run to assess the responses of the regional tidal dynamics. In addition, for each considered SLR, various projections for cumulative rates of vertical accretion were applied to the intertidal flats in the Wadden Sea (ranging from 0 to 100% of projected SLR). Independent of the rate of vertical accretion, the spatial pattern of M2 amplitude changes remains relatively stable throughout most of the model domain for a SLR of 0.8 m. However, the model shows a substantial sensitivity toward the different rates of vertical accretion along the coasts of the Wadden Sea, but also in remote regions like the Skagerrak. If no vertical accretion is assumed in the intertidal flats of the Wadden Sea, the German Bight and the Danish west coast are subject to decreases in M2 amplitudes. In contrast, those regions experience increases in M2 amplitudes if the local intertidal flats are able to keep up with the projected SLR of 0.8 m. Between the different scenarios, the North Frisian Wadden Sea shows the largest differences in M2 amplitudes, locally varying by up to 14 cm. For a SLR of 2.0 m, the M2 amplitude changes are even more amplified. Again, the differences between the various rates of vertical accretion are largest in the North Frisian Wadden Sea (> 20 cm). The local distortion of the tidal wave is also significantly different between the scenarios. In the case of no vertical accretion, tidal asymmetry in the German estuaries increases, leading to a potentially enhanced sediment import. The presented results have strong implications for local coastal protection strategies and navigation in adjacent estuaries.


2021 ◽  
Author(s):  
Jesús M. Castillo ◽  
Blanca Gallego‐Tévar ◽  
Eloy M. Castellanos ◽  
M. Enrique Figueroa ◽  
Anthony J. Davy

Sign in / Sign up

Export Citation Format

Share Document