Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data

2016 ◽  
Vol 58 ◽  
pp. 510-525 ◽  
Author(s):  
Marinos Karteris ◽  
Ifigeneia Theodoridou ◽  
Giorgos Mallinis ◽  
Emmanouel Tsiros ◽  
Apostolos Karteris
2018 ◽  
Vol 10 (11) ◽  
pp. 1737 ◽  
Author(s):  
Jinchao Song ◽  
Tao Lin ◽  
Xinhu Li ◽  
Alexander V. Prishchepov

Fine-scale, accurate intra-urban functional zones (urban land use) are important for applications that rely on exploring urban dynamic and complexity. However, current methods of mapping functional zones in built-up areas with high spatial resolution remote sensing images are incomplete due to a lack of social attributes. To address this issue, this paper explores a novel approach to mapping urban functional zones by integrating points of interest (POIs) with social properties and very high spatial resolution remote sensing imagery with natural attributes, and classifying urban function as residence zones, transportation zones, convenience shops, shopping centers, factory zones, companies, and public service zones. First, non-built and built-up areas were classified using high spatial resolution remote sensing images. Second, the built-up areas were segmented using an object-based approach by utilizing building rooftop characteristics (reflectance and shapes). At the same time, the functional POIs of the segments were identified to determine the functional attributes of the segmented polygon. Third, the functional values—the mean priority of the functions in a road-based parcel—were calculated by functional segments and segmental weight coefficients. This method was demonstrated on Xiamen Island, China with an overall accuracy of 78.47% and with a kappa coefficient of 74.52%. The proposed approach could be easily applied in other parts of the world where social data and high spatial resolution imagery are available and improve accuracy when automatically mapping urban functional zones using remote sensing imagery. It will also potentially provide large-scale land-use information.


Author(s):  
Linmei Wu ◽  
Li Shen ◽  
Zhipeng Li

A kernel-based method for very high spatial resolution remote sensing image classification is proposed in this article. The new kernel method is based on spectral-spatial information and structure information as well, which is acquired from topic model, Latent Dirichlet Allocation model. The final kernel function is defined as <i>K</i>&thinsp;=&thinsp;<i>u<sub>1</sub></i><i>K</i><sup>spec</sup>&thinsp;+&thinsp;<i>u<sub>2</sub></i><i>K</i><sup>spat</sup>&thinsp;+&thinsp;<i>u<sub>3</sub></i><i>K</i><sup>stru</sup>, in which <i>K</i><sup>spec</sup>, <i>K</i><sup>spat</sup>, <i>K</i><sup>stru</sup> are radial basis function (RBF) and <i>u<sub>1</sub></i>&thinsp;+&thinsp;<i>u<sub>2</sub></i>&thinsp;+&thinsp;<i>u<sub>3</sub></i>&thinsp;=&thinsp;1. In the experiment, comparison with three other kernel methods, including the spectral-based, the spectral- and spatial-based and the spectral- and structure-based method, is provided for a panchromatic QuickBird image of a suburban area with a size of 900&thinsp;×&thinsp;900 pixels and spatial resolution of 0.6&thinsp;m. The result shows that the overall accuracy of the spectral- and structure-based kernel method is 80&thinsp;%, which is higher than the spectral-based kernel method, as well as the spectral- and spatial-based which accuracy respectively is 67&thinsp;% and 74&thinsp;%. What's more, the accuracy of the proposed composite kernel method that jointly uses the spectral, spatial, and structure information is highest among the four methods which is increased to 83&thinsp;%. On the other hand, the result of the experiment also verifies the validity of the expression of structure information about the remote sensing image.


Author(s):  
G. Waldhoff ◽  
S. Eichfuss ◽  
G. Bareth

The classification of remote sensing data is a standard method to retrieve up-to-date land use data at various scales. However, through the incorporation of additional data using geographical information systems (GIS) land use analyses can be enriched significantly. In this regard, the Multi-Data Approach (MDA) for the integration of remote sensing classifications and official basic geodata for a regional scale as well as the achievable results are summarised. On this methodological basis, we investigate the enhancement of land use analyses at a very high spatial resolution by combining WorldView-2 remote sensing data and official cadastral data for Germany (the Automated Real Estate Map, ALK). Our first results show that manifold thematic information and the improved geometric delineation of land use classes can be gained even at a high spatial resolution.


2013 ◽  
Vol 5 (10) ◽  
pp. 5064-5088 ◽  
Author(s):  
Roberto Chávez ◽  
Jan Clevers ◽  
Martin Herold ◽  
Edmundo Acevedo ◽  
Mauricio Ortiz

Sign in / Sign up

Export Citation Format

Share Document