Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh

2016 ◽  
Vol 65 ◽  
pp. 124-134 ◽  
Author(s):  
P.K. Halder ◽  
N. Paul ◽  
M.U.H. Joardder ◽  
M.Z.H. Khan ◽  
M. Sarker
2018 ◽  
Vol 41 ◽  
pp. 139-153 ◽  
Author(s):  
Aline Tathyana Alves Felca ◽  
Regina Mambeli Barros ◽  
Geraldo Lúcio Tiago Filho ◽  
Ivan Felipe Silva dos Santos ◽  
Eruin Martuscelli Ribeiro

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2019 ◽  
Vol 180 ◽  
pp. 938-948 ◽  
Author(s):  
Zeng Huiru ◽  
Yan Yunjun ◽  
Federica Liberti ◽  
Bartocci Pietro ◽  
Francesco Fantozzi

2014 ◽  
Vol 755 ◽  
pp. 397-428 ◽  
Author(s):  
Peng Wang ◽  
James C. McWilliams ◽  
Claire Ménesguen

AbstractThe linear instability of several rotating, stably stratified, interior vertical shear flows $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\overline{U}(z)$ is calculated in Boussinesq equations. Two types of baroclinic, ageostrophic instability, AI1 and AI2, are found in odd-symmetric $\overline{U}(z)$ for intermediate Rossby number ($\mathit{Ro}$). AI1 has zero frequency; it appears in a continuous transformation of the unstable mode properties between classic baroclinic instability (BCI) and centrifugal instability (CI). It begins to occur at intermediate $\mathit{Ro}$ values and horizontal wavenumbers ($k,l$) that are far from $l= 0$ or $k = 0$, where the growth rate of BCI or CI is the strongest. AI1 grows by drawing kinetic energy from the mean flow, and the perturbation converts kinetic energy to potential energy. The instability AI2 has inertia critical layers (ICL); hence it is associated with inertia-gravity waves. For an unstable AI2 mode, the coupling is either between an interior balanced shear wave and an inertia-gravity wave (BG), or between two inertia-gravity waves (GG). The main energy source for an unstable BG mode is the mean kinetic energy, while the main energy source for an unstable GG mode is the mean available potential energy. AI1 and BG type AI2 occur in the neighbourhood of $A-S= 0$ (a sign change in the difference between absolute vertical vorticity and horizontal strain rate in isentropic coordinates; see McWilliams et al., Phys. Fluids, vol. 10, 1998, pp. 3178–3184), while GG type AI2 arises beyond this condition. Both AI1 and AI2 are unbalanced instabilities; they serve as an initiation of a possible local route for the loss of balance in 3D interior flows, leading to an efficient energy transfer to small scales.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119240
Author(s):  
Kanipa Ibraeva ◽  
Roman Tabakaev ◽  
Nikolay Yazykov ◽  
Maksim Rudmin ◽  
Yury Dubinin ◽  
...  

2009 ◽  
Vol 93 (1-2) ◽  
pp. 1-13 ◽  
Author(s):  
F. M. Ramos ◽  
L. A. W. Bambace ◽  
I. B. T. Lima ◽  
R. R. Rosa ◽  
E. A. Mazzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document