Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis

2019 ◽  
Vol 112 ◽  
pp. 299-316 ◽  
Author(s):  
Saleh Nasser Al-Saadi ◽  
Awni K. Shaaban
2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Author(s):  
Barry Mc Carron ◽  
Xianhai Meng ◽  
Shane Colclough

The Energy Performance of Buildings Directive (EPBD) has introduced the concept of Nearly Zero Energy Buildings (NZEB) specifying that by 31 December 2020 all new buildings must meet the nearly zero- energy standard, the Passive House standard has emerged as a key enabler for the Nearly Zero Energy Building standard. The combination of Passive House with renewables represents a suitable solution to move to low/zero carbon. The hypothesis in this study is that a certified passive house building with high levels of airtightness with a balanced mechanical ventilation with heat recovery (MVHR) should yield lower indoor radon concentrations. This article presents results and analysis of measured radon levels in a total of 97 certified passive house dwellings using CR-393 alpha track diffusion radon gas detectors. The results support the hypothesis that certified passive house buildings present lower radon levels. A striking observation to emerge from the data shows a difference in radon distribution between upstairs and downstairs when compared against regular housing. The study is a first for Ireland and the United Kingdom and it has relevance to a much wider context with the significant growth of the passive house standard globally.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2979 ◽  
Author(s):  
Javier Rey-Hernández ◽  
Eloy Velasco-Gómez ◽  
Julio San José-Alonso ◽  
Ana Tejero-González ◽  
Sergio González-González ◽  
...  

The building sector is responsible for a substantial part of the energy consumption and corresponding CO2 emissions. The European Union has consequently developed various directives, among which the updated Energy Performance of Buildings Directive 2018/844/EU stands out, aiming at minimizing the energy demand in buildings, improving the energy efficiency of their facilities and integrating renewable energies. The objective of the present study was to develop an analysis on the energy performance, related CO2 emissions and operating costs of the renewable energy technologies implemented within a multipurpose near Zero Energy Building (nZEB). The target building is an existing nZEB called LUCIA, located in Valladolid (Spain). Monitoring data provides the required information on the actual needs for electricity, cooling and heating. It is equipped with solar energy photovoltaic systems, a biomass boiler and a geothermal Earth to Air Heat Exchanger (EAHX) intended for meeting the ventilation thermal loads. All systems studied show favourable performances, but depend significantly on the particular characteristics of the building, the control algorithm and the climate of the location. Hence, design of these strategies for new nZEBs must consider all these factors. The combined use of the PhotoVoltaic PV System, the biomass and the EAHX reduces the CO2 emissions up to 123 to 170 tons/year in comparison with other fuels, entailing economic savings from the system operation of up to 43,000–50,000 €/year.


2014 ◽  
Vol 1020 ◽  
pp. 561-565 ◽  
Author(s):  
Rastislav Ingeli ◽  
Katarína Minarovičová ◽  
Miroslav Čekon

Buildings account for 40% of the primary energy use and 24%of the generation of green house gases worldwide. Therefore, a reduction of the specific energy demand of buildings and increased use of renewable energy are important measures of climate change mitigation. On the 18th of May 2010 a recast of the EPBD was approved which further clarifies the intention that buildings shall have a low energy demand. The recast of the EPBD specifies that by the end of 2020 all new buildings shall be “nearly zero-energy buildings”. A nearly zero-energy building is defined as a building with a very high energy performance and very simple shape. The current focusing on the energy efficiency of the building operation may lead to uniform cuboid architecture with heavy insulated building envelopes. The paper deals with the influence of energy concept on architectural elements (and their properties as shape, material, colour, texture etc.)


Author(s):  
Gisele Goulart Tavares ◽  
Marcus Vinícius Ferraz ◽  
Eric Vargas Loureiro ◽  
Vitor De Castro Nobre ◽  
Leonardo Goliatt ◽  
...  

The zero-energy building, also known as Net-Zero Energy Building (NZEB), is based on the concept of an energy-efficient building that balances its total energy using solutions that aim to mitigate CO2 emissions and reduce energy use in the constructions.  Energy consumption in residential and commercial buildings increased between 20% and 40% in developed countries and exceeded the industry and transportation sectors. Due to climate change, by 2050 buildings can consume 20% more energy, with energy performance being the critical element in achieving climate goals and improving energy security. The objective of this paper is to maximize the thermal comfort in an NZEB through the evolutionary algorithm PSO (Particle Swarm Optimization), a technique inspired by the collective intelligence of the animals. For this, different constructive parameters were inserted in a geometric model to identify combinations that offer greater comfort. For the optimization problem of this work, the design parameters were: block type, concrete thickness used in the solid slab, mortar type, window size, door size, and cover type. From the geometric model, an IDF file was generated for the parameterization and subsequent energy simulation of the scenarios created by the PSO in the EnergyPlus software. The exchange of materials and parameter values of the model reached lower hours of discomfort per year in comparison to results obtained in the literature.


Sign in / Sign up

Export Citation Format

Share Document