Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons

2020 ◽  
Vol 131 ◽  
pp. 110024
Author(s):  
Mohanned Mohamedali ◽  
Olumide Ayodele ◽  
Hussameldin Ibrahim
2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2019 ◽  
Vol 37 (1) ◽  
pp. 337-346 ◽  
Author(s):  
Manik Kumer Ghosh ◽  
Mícheál Séamus Howard ◽  
Stephen Dooley

2015 ◽  
Vol 8 (1) ◽  
pp. 623-687 ◽  
Author(s):  
R. Volkamer ◽  
S. Baidar ◽  
T. L. Campos ◽  
S. Coburn ◽  
J. P. DiGangi ◽  
...  

Abstract. Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO), and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the CU Airborne Multi AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, in situ aerosol size distributions by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS), and in situ H2O by Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL). Data are presented from two research flights (RF12, RF17) aboard the NSF/NCAR GV aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project. We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols, and find O4-inferred aerosol extinction profiles at 477 nm agree within 5% with Mie calculations of extinction profiles constrained by UHSAS. CU AMAX-DOAS provides a flexible choice of geometry which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise), and to test the robustness of BrO, IO, and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01), and provides independent validation data from ship-based in situ Cavity Enhanced- and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near surface concentrations agree within 20% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km 5–10 pptv NO2 agree with model predictions, and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF), and up to 500 m vertical resolution. The tropospheric BrO VCD was 1.5 × 1013 molec cm−2 (RF12), and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17), and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO, and the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere.


Langmuir ◽  
2010 ◽  
Vol 26 (24) ◽  
pp. 18824-18833 ◽  
Author(s):  
Camelia Matei Ghimbeu ◽  
Roger Gadiou ◽  
Joseph Dentzer ◽  
Dominique Schwartz ◽  
Cathie Vix-Guterl

2010 ◽  
Vol 102 (2) ◽  
pp. 541-548 ◽  
Author(s):  
M. L. Lin ◽  
N. K. Lin ◽  
C. C. Chen ◽  
H. J. Liaw ◽  
C. M. Shu

2011 ◽  
Vol 287-290 ◽  
pp. 1691-1695
Author(s):  
Qun Feng Zhang ◽  
Yao Ming Ju ◽  
Lei Ma ◽  
Chun Shan Lu ◽  
Xiao Nian Li

Nitrobenzene(NB) is a highly toxic and resistant to degradation organic pollutant which has been widely distributed in industrial wastewater. Much more attentions on the degradation of NB have been attracted to achieve the effectively removal of organic pollutant. Based on the hydrogen production from aqueous-phase reforming (APR) of oxygenated hydrocarbons reported by Dumesic, a novel method for the catalytic degradation of NB by APR reaction in wastewater has been proposed in this study. The effects of reaction conditions, such as temperature, the initial concentration of NB were investigated over Pd/C catalyst. The experimental results indicated that the degradation degree of NB could reach 100% (NB could be degraded completely) under optimal reaction conditions: 0.75 g 5% Pd/C, 2000 mg/L NB, T = 493 K, P = 3 MPa, t = 6 h under the atmosphere of Ar with a stirring speed of 950 r/min. The deactivation of Pd/C catalyst had not been observed after being reused for 12 recycles (the degradation degree of NB was more than 97%).


Sign in / Sign up

Export Citation Format

Share Document