scholarly journals Aircraft measurements of bromine monoxide, iodine monoxide, and glyoxal profiles in the tropics: comparison with ship-based and in situ measurements

2015 ◽  
Vol 8 (1) ◽  
pp. 623-687 ◽  
Author(s):  
R. Volkamer ◽  
S. Baidar ◽  
T. L. Campos ◽  
S. Coburn ◽  
J. P. DiGangi ◽  
...  

Abstract. Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO), and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4) were measured by the CU Airborne Multi AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, in situ aerosol size distributions by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS), and in situ H2O by Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL). Data are presented from two research flights (RF12, RF17) aboard the NSF/NCAR GV aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project. We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols, and find O4-inferred aerosol extinction profiles at 477 nm agree within 5% with Mie calculations of extinction profiles constrained by UHSAS. CU AMAX-DOAS provides a flexible choice of geometry which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise), and to test the robustness of BrO, IO, and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01), and provides independent validation data from ship-based in situ Cavity Enhanced- and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near surface concentrations agree within 20% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km 5–10 pptv NO2 agree with model predictions, and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF), and up to 500 m vertical resolution. The tropospheric BrO VCD was 1.5 × 1013 molec cm−2 (RF12), and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17), and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO, and the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere.

2015 ◽  
Vol 8 (5) ◽  
pp. 2121-2148 ◽  
Author(s):  
R. Volkamer ◽  
S. Baidar ◽  
T. L. Campos ◽  
S. Coburn ◽  
J. P. DiGangi ◽  
...  

Abstract. Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2–O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km, 5–10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 × 1013 molec cm−2 (RF12) and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17) and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.


2019 ◽  
Vol 19 (9) ◽  
pp. 5853-5879 ◽  
Author(s):  
Stefan F. Schreier ◽  
Andreas Richter ◽  
John P. Burrows

Abstract. Nitrogen dioxide (NO2), produced as a result of fossil fuel combustion, biomass burning, lightning, and soil emissions, is a key urban and rural tropospheric pollutant. In this case study, ground-based remote sensing has been coupled with the in situ network in Vienna, Austria, to investigate NO2 distributions in the planetary boundary layer. Near-surface and path-averaged NO2 mixing ratios within the metropolitan area of Vienna are estimated from car DOAS (differential optical absorption spectroscopy) zenith-sky and tower DOAS horizon observations. The latter configuration is innovative in the sense that it obtains horizontal measurements at more than a hundred different azimuthal angles – within a 360∘ rotation taking less than half an hour. Spectral measurements were made with a DOAS instrument on nine days in April, September, October, and November 2015 in the zenith-sky mode and on five days in April and May 2016 in the off-axis mode. The analysis of tropospheric NO2 columns from the car measurements and O4 normalized NO2 path averages from the tower observations provide interesting insights into the spatial and temporal NO2 distribution over Vienna. Integrated column amounts of NO2 from both DOAS-type measurements are converted into mixing ratios by different methods. The estimation of near-surface NO2 mixing ratios from car DOAS tropospheric NO2 vertical columns is based on a linear regression analysis including mixing height and other meteorological parameters that affect the dilution and reactivity in the planetary boundary layer – a new approach for such conversion. Path-averaged NO2 mixing ratios are calculated from tower DOAS NO2 slant column densities by taking into account topography and geometry. Overall, lap averages of near-surface NO2 mixing ratios obtained from car DOAS zenith-sky measurements, around a circuit in Vienna, are in the range of 3.8 to 26.1 ppb and in good agreement with values obtained from in situ NO2 measurements for days with wind from the southeast. Path-averaged NO2 mixing ratios at 160 m above the ground as derived from the tower DOAS measurements are between 2.5 and 9 ppb on two selected days with different wind conditions and pollution levels and show similar spatial distribution as seen in the car DOAS zenith-sky observations. We conclude that the application of the two methods to obtain near-surface and path-averaged NO2 mixing ratios is promising for this case study.


2018 ◽  
Author(s):  
Stefan F. Schreier ◽  
Andreas Richter ◽  
John P. Burrows

Abstract. Nitrogen dioxide (NO2), produced as a result of fossil fuel combustion, biomass burning, lightning, and soil emissions, is a key urban and rural tropospheric pollutant. In this case study, ground-based remote sensing has been coupled with the in situ network in Vienna, Austria, to investigate NO2 distributions in the planetary boundary layer. Near-surface and path-averaged NO2 mixing ratios within the metropolitan area of Vienna are estimated from car DOAS (Differential Optical Absorption Spectroscopy) zenith-sky and tower DOAS horizon observations. The latter configuration is innovative in the sense that it obtains horizontal measurements at more than hundred different azimuthal angles – within a 360° rotation taking less than half an hour. Spectral measurements were made with a DOAS instrument on nine days in April, September, October, and November 2015 in the zenith-sky mode and on five days in April and May 2016 in the off-axis mode. The analysis of tropospheric NO2 columns from the car measurements and O4 normalized NO2 path averages from the tower observations provide interesting insights into the spatial and temporal NO2 distribution over Vienna. Integrated column amounts of NO2 from both DOAS-type measurements are converted into mixing ratios by different methods. The estimation of near-surface NO2 mixing ratios from car DOAS tropospheric NO2 vertical columns is based on a linear regression analysis including mixing-height and other meteorological parameters that affect the dilution and reactivity in the planetary boundary layer – a new approach for such conversion. Path-averaged NO2 mixing ratios are calculated from tower DOAS NO2 slant column densities by taking into account topography and geometry. Overall, lap averages of near-surface NO2 mixing ratios obtained from car DOAS zenith-sky measurements, around a circuit in Vienna, are in the range of 3.8 to 26.2 ppb and in good agreement with values obtained from in situ NO2 measurements for days with wind from the Southeast. Path-averaged NO2 mixing ratios at 160 m above the ground as derived from the tower DOAS measurements are between 2.5 and 9 ppb on two selected days with different wind conditions and pollution levels and show similar spatial distribution as seen in the car DOAS zenith-sky observations. We conclude that the application of the two methods to obtain near-surface and path-averaged NO2 mixing ratios is promising for this case study.


2018 ◽  
Author(s):  
Yang Wang ◽  
Steffen Dörner ◽  
Sebastian Donner ◽  
Sebastian Böhnke ◽  
Isabelle De Smedt ◽  
...  

Abstract. A Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument was deployed in May and June 2016 at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xingtai (one of the most polluted cities in China) during the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) and Air chemistry Research In Asia (ARIAs) joint experiments to derive tropospheric vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols. Aerosol optical depths derived from MAX-DOAS were found to be consistent with collocated sun-photometer measurements. Also the derived near-surface aerosol extinction and HCHO mixing ratio agree well with coincident visibility meter and in situ HCHO measurements, with mean HCHO near-surface mixing ratios of ~ 3.5 ppb. Underestimates of MAX-DOAS results compared to in situ measurements of NO2 (~ 60 %), SO2 (~ 20 %) are found expectedly due to vertical and horizontal inhomogeneity of trace gases. Vertical profiles of aerosols and NO2, SO2 are reasonably consistent with those measured by a collocated Raman Lidar and aircraft spirals over the station. The deviations can be attributed to differences in sensitivity as a function of altitude and substantial horizontal gradients of pollutants. Aerosols, HCHO, and CHOCHO profiles typically extended to higher altitudes (with 75 % integrated column located below ~ 1.4 km) than did NO2, SO2, and HONO (with 75 % integrated column below ~ 0.5 km) under polluted condition. Lifted layers were systematically observed for all species, (except HONO), indicating accumulation, secondary formation, or long-range transport of the pollutants at higher altitudes. Maximum values routinely occurred in the morning for NO2, SO2, and HONO, but around noon for aerosols, HCHO, and CHOCHO, mainly dominated by photochemistry, characteristic upslope/downslope circulation and PBL dynamics. Significant day-to-day variations are found for all species due to the effect of regional transport and changes in synoptic pattern analysed with HYSPLIT trajectories. Low pollution was often observed for air masses from the north-west (behind cold fronts), and high pollution from the southern areas such as industrialized Wuan. The contribution of regional transport for the pollutants measured at the site during the observation period was estimated to be about 20 % to 30 % for trace gases, and about 50 % for aerosols. In addition, agricultural burning events impacted the day-to-day variations of HCHO, CHOCHO and aerosols.


1992 ◽  
Vol 29 (3) ◽  
pp. 506-511 ◽  
Author(s):  
M. O. Al-Hunaidi

Spectral analysis of surface waves (SASW) is a nondestructive and in situ method for determining the stiffness profiles of soil and pavement sites. This method involves the generation and measurement of surface Rayleigh waves. By exploiting the dispersive characteristic of these waves in layered systems, the SASW method provides information on the variation of stiffness with depth. This paper presents the results of a case study for near-surface profiling of a pavement site using the SASW method. In this study, inconsistencies were observed in the dispersion curve of the site when the usual procedure of unfolding the relative phase spectrum was followed. A correction procedure to eliminate these inconsistencies is suggested and discussed. The thickness and wave velocities of the various layers obtained with the SASW method, after applying the correction procedure, matched closely those determined from cored samples and cross-hole tests. Key words : nondestructive testing, pavement, layered media, Rayleigh wave, spectral analysis, shear wave velocity, wave propagation.


2021 ◽  
Vol 14 (1) ◽  
pp. 96-105
Author(s):  
V. V. Suskin ◽  
◽  
I. V. Kapyrin ◽  
F. V. Grigorev ◽  
◽  
...  

The article evaluates the impact of a “buried wall” barrier on the long-term safety during the long-term storage1 or in-situ disposal of nuclear legacy facilities, in particular, industrial reservoirs, as well as during the development of near-surface disposal facilities for radioactive waste (RWDF). For assessment purposes, filtration and mass transfer processes have been numerically modelled in the GeRa code based on a case study of a reference near-surface facility. The study explores in which way the available covering screen affects the dynamics of contaminant spread. It evaluates the sensitivity of the results to the dispersion parameter commonly characterized by a high degree of uncertainty.


2016 ◽  
Author(s):  
Barbara Dix ◽  
Theodore K. Koenig ◽  
Rainer Volkamer

Abstract. We present a parameterization retrieval of volume mixing ratios (VMR) from differential slant column density (dSCD) measurements by airborne multi-axis differential optical absorption spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analysed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box-air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are 1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; 2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) need to be known; and 3) VMRs can be retrieved for every measurement point along a flight track, in contrast to profile inversion techniques. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using 1) simulated dSCD data for different trace gas and aerosol profiles; and 2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are as follows: BrO: (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987; IO: (−0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979; NO2: (−0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: BrO: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907; IO: (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973; NO2: (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara = (0.1 ± 0.2) pptv + (0.95 ± 0.14) x BrOOE; IOpara = (0.01 ± 0.02) pptv + (1.00 ± 0.12) x IOOE; NO2para = (1.7 ± 8.0) pptv + (0.90 ± 0.51) x NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO, and 10 pptv NO2. The retrieval is applicable over a wide range of atmospheric conditions and measurement geometries, and not limited to the interpretation of vertical profile measurements in the remote troposphere.


2016 ◽  
Vol 9 (11) ◽  
pp. 5655-5675 ◽  
Author(s):  
Barbara Dix ◽  
Theodore K. Koenig ◽  
Rainer Volkamer

Abstract. We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (−0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (−0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO2. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO2. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara =  (0.1 ± 0.2) pptv + (0.95 ± 0.14)  ×  BrOOE; IOpara =  (0.01 ± 0.02) pptv + (1.00 ± 0.12)  ×  IOOE; NO2para  =  (3.9 ± 2.5) pptv + (0.87 ± 0.15)  ×  NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO2. The retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1053
Author(s):  
Elizaveta Kovaleva ◽  
Roger Dixon

The Vredefort impact structure in South Africa is deeply eroded to its lowermost levels. However, granophyre (impact melt) dykes in such structures preserve clasts of supracrustal rocks, transported down from the uppermost levels of the initial structure. Studying these clasts is the only way to understand the properties of already eroded impactites. One such lithic clast from the Vredefort impact structure contains a thin pseudotachylite vein and is shown to be derived from the near-surface environment of the impact crater. Traditionally, impact pseudotachylites are referred to as in situ melt rocks with the same chemical and isotopic composition as their host rocks. The composition of the sampled pseudotachylite vein is not identical to its host rock, as shown by the micro-X-ray fluorescence (µXRF) and energy-dispersive X-ray (EDX) spectrometry mapping. Mapping shows that the melt transfer and material mixing within pseudotachylites may have commonly occurred at the upper levels of the structure. The vein is spatially related to shocked zircon and monazite crystals in the sample. Granular zircons with small granules are concentrated within and around the vein (not farther than 6–7 mm from the vein). Zircons with planar fractures and shock microtwins occur farther from the vein (6–12 mm). Zircons with microtwins (65°/{112}) are also found inside the vein, and twinned monazite (180°/[101]) is found very close to the vein. These spatial relationships point to elevated shock pressure and shear stress, concentrated along the vein’s plane during impact.


2012 ◽  
Vol 5 (4) ◽  
pp. 5419-5448 ◽  
Author(s):  
H. K. Roscoe ◽  
N. Brough ◽  
A. E. Jones ◽  
F. Wittrock ◽  
A. Richter ◽  
...  

Abstract. Tropospheric BrO was measured by a ground-based remote-sensing spectrometer at Halley in Antarctica, and BrO was measured by remote-sensing spectrometers in space using similar spectral regions and Differential Optical Absorption Spectroscopy (DOAS) analyses. Near-surface BrO was simultaneously measured at Halley by Chemical Ionisation Mass Spectrometry (CIMS), and in an earlier year near-surface BrO was measured at Halley over a long path by a DOAS spectrometer. During enhancement episodes, total amounts of tropospheric BrO from the ground-based remote-sensor were similar to those from space, but if we assume that the BrO was confined to the boundary layer they were very much larger than values measured by either near-surface technique. This large apparent discrepancy can be resolved if substantial amounts of BrO were in the free troposphere during most enhancement episodes. Amounts observed by the ground-based remote sensor at different elevation angles, and their formal inversions to vertical profiles, also show that much of the BrO was often in the free troposphere. This is consistent with the ~5 day lifetime of Bry, from the enhanced BrO observed during some Antarctic blizzards, and from aircraft measurements of BrO well above the surface in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document