Manganese deficiency induces avian tibial dyschondroplasia by inhibiting chondrocyte proliferation and differentiation

2021 ◽  
Vol 140 ◽  
pp. 164-170
Author(s):  
Cui-Yue Wang ◽  
Wei-Hao Xia ◽  
Lin Wang ◽  
Zhen-Yong Wang
1996 ◽  
Vol 148 (3) ◽  
pp. 465-474 ◽  
Author(s):  
C Farquharson ◽  
J S Rennie ◽  
N Loveridge ◽  
C C Whitehead

Abstract 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is regarded as the most biologically active metabolite of cholecalciferol. It prevents tibial dyschondroplasia (TD) in chicks where inhibition of chondrocyte differentiation within the growth plate occurs. However, it is unclear whether its mode of action is through direct interaction with its chondrocyte receptor and its known regulatory role in cell differentiation or is mediated by increased calcium absorption and mobilisation. Synthetic analogues of 1,25(OH)2D3 such as 1,25-dihydroxy-16-ene-23-yne cholecalciferol (RO 23–7553) with increased differentiation properties but reduced calcaemic activity have been synthesised. In this study, the in vitro and in vivo effects of 1,25(OH)2D3 and RO 23–7553 on chick chondrocyte growth and differentiation were examined. In addition, the in vivo effectiveness of these steroids in preventing TD in chicks was assessed. 1,25(OH)2D3 and RO 23–7553 (10−12-10−7 m) displayed biphasic concentration effects and had similar potencies in vitro in regulating chondrocyte proliferation and differentiation. However, while the incidence of TD in birds dosed with 1,25(OH)2D3 was lower (10%) than in control chicks (55%), RO 23–7553 was ineffective (50%). This may be the result of its reduced affinity (1000 times less) for the plasma vitamin D binding protein (DBP) and the chondrocyte receptor in comparison to that of 1,25(OH)2D3. A reduction in calcium supply to the chondrocyte may also result in decreased chondrocyte differentiation but blood ionised and plasma total calcium were normal in birds dosed with RO 23–7553. These data suggest that RO 23–7553 and 1,25(OH)2D3 regulate chondrocyte proliferation and differentiation similarly in vitro but not in vivo. This may be caused by differences in DBP binding and clearance rates of the two steroids in vivo. Journal of Endocrinology (1996) 148, 465–474


2020 ◽  
Vol 235 (9) ◽  
pp. 6023-6031 ◽  
Author(s):  
Li Ma ◽  
Cui‐Cui Duan ◽  
Zhan‐Qing Yang ◽  
Jun‐Li Ding ◽  
Shu Liu ◽  
...  

2014 ◽  
Vol 23 (17) ◽  
pp. 4663-4673 ◽  
Author(s):  
J. Hu ◽  
J. Lu ◽  
G. Lian ◽  
R. J. Ferland ◽  
M. Dettenhofer ◽  
...  

Bone ◽  
2005 ◽  
Vol 36 (3) ◽  
pp. 379-386 ◽  
Author(s):  
Matthew J. Hilton ◽  
Laura Gutiérrez ◽  
Daniel A. Martinez ◽  
Dan E. Wells

2007 ◽  
Vol 282 (46) ◽  
pp. 33698-33706 ◽  
Author(s):  
Shufang Wu ◽  
Janna K. Flint ◽  
Geoffrey Rezvani ◽  
Francesco De Luca

NF-κB is a group of transcription factors involved in cell proliferation, differentiation, and apoptosis. Mice deficient in the NF-κB subunits p50 and p52 have retarded growth, suggesting that NF-κB is involved in bone growth. Yet, it is not clear whether the reduced bone growth of these mice depends on the lack of NF-κB activity in growth plate chondrocytes. Using cultured rat metatarsal bones and isolated growth plate chondrocytes, we studied the effects of two NF-κB inhibitors (pyrrolidine dithiocarbamate (PDTC) or BAY11-7082 (BAY)), p65 short interference RNA (siRNA), and of the overexpression of p65 on chondrocyte proliferation, differentiation, and apoptosis. To further define the underlying mechanisms, we studied the functional interaction between NF-κB p65 and BMP-2 in chondrocytes. PDTC and BAY suppressed metatarsal linear growth. Such growth inhibition resulted from decreased chondrocyte proliferation and differentiation and from increased chondrocyte apoptosis. In cultured chondrocytes, the inhibition of NF-κB p65 activation (by PDTC and BAY) and expression (by p65 siRNA) led to the same findings observed in cultured metatarsal bones. In contrast, overexpression of p65 in cultured chondrocytes induced chondrocyte proliferation and differentiation and prevented apoptosis. Although PDTC, BAY, and p65 siRNA reduced the expression of BMP-2 in cultured growth plate chondrocytes, the overexpression of p65 increased it. The addition of Noggin, a BMP-2 antagonist, neutralized the stimulatory effects of p65 on chondrocyte proliferation and differentiation, as well as its anti-apoptotic effect. In conclusion, our findings indicate that NF-κB p65 expressed in growth plate chondrocytes facilitates growth plate chondrogenesis and longitudinal bone growth by inducing BMP-2 expression and activity.


Bone ◽  
2006 ◽  
Vol 39 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Catherine Benoist-Lasselin ◽  
Emmanuel de Margerie ◽  
Linda Gibbs ◽  
Sarah Cormier ◽  
Caroline Silve ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Di Xiao ◽  
Ruiye Bi ◽  
Xianwen Liu ◽  
Jie Mei ◽  
Nan Jiang ◽  
...  

Abstract Notch signaling is involved in the early onset of osteoarthritis. The aim of this study was to investigate the role of Notch signaling changes during proliferation and differentiation of chondrocyte, and to testify the mechanism of MMP-13 regulation by Notch and Runx2 expression changes during osteoarthritis. In this study, Chondrocytes were isolated from rat knee cartilages. Notch signaling was activated/inhibited by Jagged-1/DAPT. Proliferative capacity of Chondrocytes was analyzed by CCK-8 staining and EdU labeling. ColX, Runx2 and MMP-13 expressions were analyzed as cell differentiation makers. Then, Runx2 gene expression was interfered using lentivirus transfection (RNAi) and was over-expressed by plasmids transfected siRNA in chondrocytes, and MMP-13 expression was analyzed after Jagged-1/DAPT treatment. In vivo, an intra-articular injection of shRunx2 lentivirus followed with Jagged1/DAPT treatments was performed in rats. MMP-13 expression in articular cartilage was detected by immunohistochemistry. Finally, MMP-13 expression changes were analyzed in chondrocytes under IL-1β stimulation. Our findings showed that, CCK-8 staining and EdU labeling revealed suppression of cell proliferation by Notch signaling activation after Jagged-1 treatment in chondrocytes. Promoted differentiation was also observed, characterized by increased expressions of Col X, MMP-13 and Runx2. Meanwhile, Sox9, aggrecan and Col II expressions were down-regulated. The opposite results were observed in Notch signaling inhibited cells by DAPT treatment. In addition, Runx2 RNAi significantly attenuated the ‘regulatory sensitivity’ of Notch signaling on MMP-13 expression both in vitro and in vivo. However, we found there wasn’t significant changes of this ‘regulatory sensitivity’ of Notch signaling after Runx2 over-expression. Under IL-1β circumstance, MMP-13 expression could be reduced by both DAPT treatment and Runx2 RNAi, while Runx2 interference also attenuated the ‘regulatory sensitivity’ of Notch in MMP-13 under IL-1β stimulation. In conclusion, Notch signaling is an important regulator on rat chondrocyte proliferation and differentiation, and this regulatory effect was partially mediated by proper Runx2 expression under both normal and IL-1β circumstances. In the meanwhile, DAPT treatment could effectively suppress expression of MMP-13 stimulated by IL-1 β.


Sign in / Sign up

Export Citation Format

Share Document