chondrocyte differentiation
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 50)

H-INDEX

66
(FIVE YEARS 4)

Development ◽  
2021 ◽  
Author(s):  
Diego J. Hoyle ◽  
Daniel B. Dranow ◽  
Thomas F. Schilling

Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers such as ihha, while local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression, and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative feedback loop that later maintains GPs.


Author(s):  
Marta Marchini ◽  
Mitchell R. Ashkin ◽  
Melina Bellini ◽  
Margaret Man-Ger Sun ◽  
Matthew Lloyd Workentine ◽  
...  

The genetic and developmental mechanisms involved in limb formation are relatively well documented, but how these mechanisms are modulated by changes in chondrocyte physiology to produce differences in limb bone length remains unclear. Here, we used high throughput RNA sequencing (RNAseq) to probe the developmental genetic basis of variation in limb bone length in Longshanks, a mouse model of experimental evolution. We find that increased tibia length in Longshanks is associated with altered expression of a few key endochondral ossification genes such as Npr3, Dlk1, Sox9, and Sfrp1, as well reduced expression of Fxyd2, a facultative subunit of the cell membrane-bound Na+/K+ ATPase pump (NKA). Next, using murine tibia and cell cultures, we show a dynamic role for NKA in chondrocyte differentiation and in bone length regulation. Specifically, we show that pharmacological inhibition of NKA disrupts chondrocyte differentiation, by upregulating expression of mesenchymal stem cell markers (Prrx1, Serpina3n), downregulation of chondrogenesis marker Sox9, and altered expression of extracellular matrix genes (e.g., collagens) associated with proliferative and hypertrophic chondrocytes. Together, Longshanks and in vitro data suggest a broader developmental and evolutionary role of NKA in regulating limb length diversity.


Bone ◽  
2021 ◽  
pp. 116234
Author(s):  
Christopher R. Paradise ◽  
M. Lizeth Galvan ◽  
Oksana Pichurin ◽  
Sofia Jerez ◽  
Eva Kubrova ◽  
...  

Author(s):  
Cheng Wu ◽  
Jiayi Luo ◽  
Yuanxin Liu ◽  
Jiannan Fan ◽  
Xianwen Shang ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 1664-1672
Author(s):  
Yongying Liang ◽  
Li Hu ◽  
Chuanting Ji ◽  
Xiaoxue Hu ◽  
Hao Dai

This study assessed the impact of irisin on mouse mesenchymal stem cells (MSCs) differentiation and the underlying mechanisms. Bone marrow mesenchymal stem cells (BMMSCs) and mesenchymal progenitor cells (KUSA-A1 cells) were isolated from mice and inoculated into petri dishes. Cell proliferation and apoptosis under different concentrations of irisin were detected by MTT. Irisin (1 μM) with nontoxic dose concentration was selected for subsequent experiments. Cells were exposed to 1 μM irisin, osteogenic differentiation was detected by von kossa stain, we employed oil red o stain to test adipocyte differentiation, Alcian blue stain to determine chondrocyte differentiation. BMP-2 expression was analyzed by immunocytochemical staining. Finally, signal transduction pathways and expression and transcription levels of osteogenic differentiation markers in irisin-treated cells were detected by protein imprinting and PCR. BMMSCs and KUSA-A1 cells displayed significantly suppressed osteogenic differentiation and reduced formation of extracellular mineralized matrix, while BMMSCs presented unaffected adipocyte differentiation and chondrocyte differentiation. 1 μM Irisin did not exert cytotoxicity. Further, irisin treatment abated osteogenic differentiation makers Runx2, Osterix, Osteocalcin, Osteopontin, alkaline phosphatase expression. Finally, BMP-2/Smads signaling related molecules (BMP-2, Smad1, Smad4, Smad5 and Smad8) levels were reduced after Irisin treatment. Irisin might inhibit osteoblast differentiation by modulating BMP-2/Smads axis.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2200
Author(s):  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Gustavo A. Gomez ◽  
Yian Chen ◽  
Subburaman Mohan

We previously showed that conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in long bone trabecular bone mass. Loss of Phd2 gene expression or inhibition of PHD2 activity by a specific inhibitor resulted in a several-fold compensatory increase in Phd3 expression in chondrocytes. To determine if expression of PHD3 plays a role in endochondral bone formation, we conditionally disrupted the Phd3 gene in chondrocytes by crossing Phd3 floxed (Phd3flox/flox) mice with Col2α1-Cre mice. Loss of Phd3 expression in the chondrocytes of Cre+; Phd3flox/flox conditional knockout (cKO) mice was confirmed by real time PCR. At 16 weeks of age, neither body weight nor body length was significantly different in the Phd3 cKO mice compared to Cre−; Phd3flox/flox wild-type (WT) mice. Areal BMD measurements of total body as well as femur, tibia, and lumbar skeletal sites were not significantly different between the cKO and WT mice at 16 weeks of age. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype difference was found for any of the trabecular bone measurements of either the femur or the tibia. Trabecular bone volume of distal femur epiphysis was not different between cKO and WT mice. Histology analyses revealed Phd3 cKO mice exhibited a comparable chondrocyte differentiation and proliferation, as evidenced by no changes in cartilage thickness and area in the cKO mice as compared to WT littermates. Consistent with the in vivo data, lentiviral shRNA-mediated knockdown of Phd3 expression in chondrocytes did not affect the expression of markers of chondrocyte differentiation (Col2, Col10, Acan, Sox9). Our study found that Phd2 but not Phd3 expressed in chondrocytes regulates endochondral bone formation, and the compensatory increase in Phd3 expression in the chondrocytes of Phd2 cKO mice is not the cause for increased trabecular bone mass in Phd2 cKO mice.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rui Shao ◽  
Zhong Zhang ◽  
Zhan Xu ◽  
Huiling Ouyang ◽  
Lijun Wang ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1918
Author(s):  
Young-Bum Son ◽  
Yeon Ik Jeong ◽  
Yeon Woo Jeong ◽  
Mohammad Shamim Hossein ◽  
Per Olof Olsson ◽  
...  

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.


Sign in / Sign up

Export Citation Format

Share Document