Differential cortical thinning of auditory cortex in first episode schizophrenia: Association with auditory verbal hallucinations

2019 ◽  
Vol 206 ◽  
pp. 464-465
Author(s):  
Edwin H.M. Lee ◽  
Jazmin Camchong ◽  
Stavros Skouras ◽  
Christy L.M. Hui ◽  
P.Y. Chan ◽  
...  
2016 ◽  
Vol 173 (1-2) ◽  
pp. 13-22 ◽  
Author(s):  
Long-Biao Cui ◽  
Kang Liu ◽  
Chen Li ◽  
Liu-Xian Wang ◽  
Fan Guo ◽  
...  

2020 ◽  
Vol 51 (6) ◽  
pp. 359-364 ◽  
Author(s):  
Dean F. Salisbury ◽  
Anna R. Shafer ◽  
Timothy K. Murphy ◽  
Sarah M. Haigh ◽  
Brian A. Coffman

Background. The mismatch negativity (MMN) brainwave indexes novelty detection. MMN to infrequent pitch (pMMN) and duration (dMMN) deviants is reduced in long-term schizophrenia. Although not reduced at first psychosis, pMMN is inversely associated with left hemisphere Heschl’s gyrus (HG) gray matter volume within 1 year of first hospitalization for schizophrenia-spectrum psychosis, consistent with pathology of left primary auditory cortex early in disease course. We examined whether the relationship was present earlier, at first psychiatric contact for psychosis, and whether the same structural-functional association was apparent for dMMN. Method. Twenty-seven first-episode schizophrenia-spectrum (FESz) and 27 matched healthy comparison (HC) individuals were compared. EEG-derived pMMN and dMMN were measured by subtracting the standard tone waveform (80%) from the pitch- and duration-deviant waveforms (10% each). HG volumes were calculated from T1-weighted structural magnetic resonance imaging using Freesurfer. Results. In FESz, pMMN amplitudes at Fz were inversely associated with left HG (but not right) gray matter volumes, and dMMN amplitudes were associated significantly with left HG volumes and at trend-level with right HG. There were no structural-functional associations in HC. Conclusions. pMMN and dMMN index gray matter reduction in left hemisphere auditory cortex early in psychosis, with dMMN also marginally indexing right HG volumes. This suggest conjoint functional and structural pathology that affects the automatic detection of novelty with varying degrees of penetrance prior to psychosis. These brainwaves are sensitive biomarkers of pathology early in the psychotic disease course, and may serve as biomarkers of disease progression and as therapeutic outcome measures.


2010 ◽  
Vol 117 (2-3) ◽  
pp. 463
Author(s):  
Benedicto Crespo-Facorro ◽  
Roberto Roiz-Santiañez ◽  
Rocío Pérez-Iglesias ◽  
Jose Manuel Rodríguez-Sánchez ◽  
Ignacio Mata ◽  
...  

Author(s):  
Mark T Curtis ◽  
Brian A Coffman ◽  
Dean F Salisbury

Abstract Background Pitch and duration mismatch negativity (pMMN/dMMN) are related to left Heschl’s gyrus gray matter volumes in first-episode schizophrenia (FESz). Previous methods were unable to delineate functional subregions within and outside Heschl’s gyrus. The Human Connectome Project multimodal parcellation (HCP-MMP) atlas overcomes this limitation by parcellating these functional subregions. Further, MMN has generators in inferior frontal cortex, and therefore, may be associated with inferior frontal cortex pathology. With the novel use of the HCP-MMP to precisely parcellate auditory and inferior frontal cortex, we investigated relationships between gray matter and pMMN and dMMN in FESz. Methods pMMN and dMMN were measured at Fz from 27 FESz and 27 matched healthy controls. T1-weighted MRI scans were acquired. The HCP-MMP atlas was applied to individuals, and gray matter volumes were calculated for bilateral auditory and inferior frontal cortex parcels and correlated with MMN. FDR correction was used for multiple comparisons. Results In FESz only, pMMN was negatively correlated with left medial belt in auditory cortex and area 47L in inferior frontal cortex. Duration MMN negatively correlated with the following auditory parcels: left medial belt, lateral belt, parabelt, TA2, and right A5. Further, dMMN was associated with left area 47L, right area 44, and right area 47L in inferior frontal cortex. Conclusions The novel approach revealed overlapping and distinct gray matter associations for pMMN and dMMN in auditory and inferior frontal cortex in FESz. Thus, pMMN and dMMN may serve as biomarkers of underlying pathological deficits in both similar and slightly different cortical areas.


2010 ◽  
Vol 41 (7) ◽  
pp. 1449-1460 ◽  
Author(s):  
B. Crespo-Facorro ◽  
R. Roiz-Santiáñez ◽  
R. Pérez-Iglesias ◽  
J. M. Rodriguez-Sanchez ◽  
I. Mata ◽  
...  

BackgroundThe thickness of the cortical mantle is a sensitive measure for identifying alterations in cortical structure. We aimed to explore whether first episode schizophrenia patients already show a significant cortical thinning and whether cortical thickness anomalies may significantly influence clinical and cognitive features.MethodWe investigated regional changes in cortical thickness in a large and heterogeneous sample of schizophrenia spectrum patients (n=142) at their first break of the illness and healthy controls (n=83). Magnetic resonance imaging brain scans (1.5 T) were obtained and images were analyzed by using brains2. The contribution of sociodemographic, cognitive and clinical characterictics was investigated.ResultsPatients showed a significant total cortical thinning (F=17.55, d=−0.62, p<0.001) and there was a diffuse pattern of reduced thickness (encompassing frontal, temporal and parietal cortices) (all p's<0.001, d's>0.53). No significant group×gender interactions were observed (all p's>0.15). There were no significant associations between the clinical and pre-morbid variables and cortical thickness measurements (all r's<0.12). A weak significant negative correlation between attention and total (r=−0.24, p=0.021) and parietal cortical thickness (r=−0.27, p=0.009) was found in patients (thicker cortex was associated with lower attention). Our data revealed a similar pattern of cortical thickness changes related to age in patients and controls.ConclusionsCortical thinning is independent of gender, age, age of onset and duration of the illness and does not seem to significantly influence clinical and functional symptomatology. These findings support a primary neurodevelopment disorder affecting the normal cerebral cortex development in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document