Micropropagation of the potential blueberry rootstock—Vaccinium arboreum through axillary shoot proliferation

2021 ◽  
Vol 280 ◽  
pp. 109908
Author(s):  
Qiansheng Li ◽  
Ping Yu ◽  
Jingru Lai ◽  
Mengmeng Gu
1990 ◽  
Vol 115 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Philip W. Clayton ◽  
John F. Hubstenberger ◽  
Gregory C. Phillips ◽  
S. Ann Butler-Nance

Micropropagation of 11 rare or endangered cacti species belonging to the subtribe Cactinae was achieved by rooting of proliferated axillary shoots. Shoot tip explants were obtained from seedlings of Escobaria missouriensis D.R. Hunt, E. robbinsorum (Earle) D.R. Hunt, Sclerocactus spinosior (Engelm.) Woodruff & L. Benson, and Toumeya papyracantha (Engelm.) Br. & Rose, and from mature plants of Mammillaria wrightii Engelm., Pediocactus bradyi L. Benson, P. despainii Welsh & Goodrich, P. knowltonii L. Benson, P. paradinei B.W. Benson, P. winkleri Heil, and S. mesae-verdae (Boissevain) L. Benson. Three or four species were used in each of a series of experiments investigating the effects of basal media and auxin and cytokinin types and concentrations on axillary shoot proliferation. Low or no auxin but moderate to high cytokinin concentrations were required for axillary shoot production. All species rooted spontaneously on hormone-free media; however, several species rooted better on media containing auxin. All species were re-established in the greenhouse.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 712
Author(s):  
Marzena Nowakowska ◽  
Žaklina Pavlović ◽  
Marcin Nowicki ◽  
Sarah L. Boggess ◽  
Robert N. Trigiano

Helianthus verticillatus (Asteraceae), whorled sunflower, is a perennial species restricted to a few locations in the Southeastern United States. Habitat loss has caused H. verticillatus to become rare, and since 2014, it has been federally listed as an endangered species. As a part of the recovery plan for the restoration and protection of H. verticillatus, an efficient micropropagation protocol based on axillary shoot proliferation was developed. Various concentrations of 6-benzylaminopurine (BAP; 0 to 4.44 µM) were examined for their morphogenetic potential in the regeneration of six genotypes of H. verticillatus from the nodal explants derived from greenhouse-grown plants. Both the BAP concentration and genotype had significant effects on the regeneration capacity of H. verticillatus. Although the induced buds were observed on ½-strength Murashige and Skoog medium without plant growth regulators, a higher rate of induction and bud development were achieved on media with either 0.88 or 2.22 µM BAP, regardless of the genotype. Successful rooting of the induced shoots was achieved within four weeks after the transfer from the induction medium to the fresh ½-strength MS medium, but the rooting efficiency was dependent on the plant’s genetic background. Regenerated plantlets, with well-developed shoots and roots, were acclimatized successfully to greenhouse conditions with a 97% survival rate. Simple sequence repeats (SSRs) markers were employed to assess the genetic uniformity of the micropropagated plants of H. verticillatus. No extraneous bands were detected between regenerants and their respective donor plants, confirming the genetic fidelity and stability of regenerated plants. To our knowledge, the protocol developed in this study is the first such report for this endangered species.


2016 ◽  
Vol 24 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Mafatlal M. Kher ◽  
Deepak Soner ◽  
Neha Srivastava ◽  
Murugan Nataraj ◽  
Jaime A. Teixeira da Silva

Abstract Clerodendrum phlomidis L. f. is an important medicinal plant of the Lamiaceae family, particularly its roots, which are used for various therapeutic purposes in a pulverized form. The objective of this study was to develop a standard protocol for axillary shoot proliferation and rooting of C. phlomidis for its propagation and conservation. Nodal explants were inoculated on Murashige and Skoog (MS) medium that was supplemented with one of six cytokinins: 6-benzyladenine, kinetin, thidiazuron, N6-(2-isopentenyl) adenine (2iP), trans-zeatin (Zea) and meta-topolin. Callus induction, which was prolific at all concentrations, formed at the base of nodal explants and hindered shoot multiplication and elongation. To avoid or reduce callus formation with the objective of increasing shoot formation, the same six cytokinins were combined with 4 μM 2,3,5-tri-iodobenzoic acid (TIBA) alone or in combination with 270 μM adenine sulphate (AdS). Nodal explants that were cultured on the medium supplemented with 9.12 μM Zea, 4 μM TIBA and 270 μM AdS produced significantly more and longer shoots than on medium without TIBA and AdS. Half-strength MS medium supplemented with 8.05 μM α-naphthaleneacetic acid was the best medium for root formation. Most (75%) in vitro rooted plantlets were successfully acclimatized under natural conditions.


Sign in / Sign up

Export Citation Format

Share Document