Homogeneity and reproducibility of in vivo fascicle length and pennation determined by ultrasonography in human vastus lateralis muscle

2006 ◽  
Vol 21 (5) ◽  
pp. 268-272 ◽  
Author(s):  
S. Mairet ◽  
O. Maïsetti ◽  
P. Portero
2000 ◽  
Vol 88 (3) ◽  
pp. 851-856 ◽  
Author(s):  
Y. Ichinose ◽  
Y. Kawakami ◽  
M. Ito ◽  
H. Kanehisa ◽  
T. Fukunaga

To determine the shortening velocities of fascicles of the vastus lateralis muscle (VL) during isokinetic knee extension, six male subjects were requested to extend the knee with maximal effort at angular velocities of 30 and 150°/s. By using an ultrasonic apparatus, longitudinal images of the VL were produced every 30 ms during knee extension, and the fascicle length and angle of pennation were obtained from these images. The shortening fascicle length with extension of the knee (from 98 to 13° of knee angle; full extension = 0°) was greater (43 mm) at 30°/s than at 150°/s (35 mm). Even when the angular velocity remained constant during the isokinetic range of motion, the fascicle velocity was found to change from 39 to 77 mm/s at 150°/s and from 6 to 19 mm/s at 30°/s. The force exerted by a fascicle changed with the length of the fascicle at changing angular velocities. The peak values of fascicle force and velocity were observed at ∼90 mm of fascicle length. In conclusion, even if the angular velocity of knee extension is kept constant, the shortening velocity of a fascicle is dependent on the force applied to the muscle-tendon complex, and the phenomenon is considered to be caused mainly by the elongation of the elastic element (tendinous tissue).


Author(s):  
Eurico Peixoto César ◽  
Letícia De Oliveira Teixeira ◽  
Daniel Vieira Braña Côrtes de Souza ◽  
Paulo Sergio Chagas Gomes

The aim of the study was to investigate the acute effects of passive static stretching (PSS) on the fascicle length (FL) and fascicle angle (FA) of the vastus lateralis muscle (VL) in two different joint positions. Twelve physically active men (26.9 ± 7.5 years, 178.6 ± 7.0 cm, and 82.5 ± 16.8 kg) were placed in the prone position for the acquisition of ultrasound images (US) of VL, registered with extended and totally flexed knee up to the heel contact with the gluteus, before and after a PSS routine comprised of three 30-s repetitions maintained in the maximal discomfort position as reported by the participant. Results of the paired t-test indicated an increase in FL (16.2%; p = 0.012) and reduction in FA (15.5%; p = 0.003) in pre vs. post stretching comparisons for the extended knee position. There was also a significant increase in FL (34%; p = 0.0001) and reduction in FA (25%; p = 0.0007) when compared the extended knee vs. flexed knee positions. There were no significant differences in muscle architecture variables for the flexed knee position. The results showed high and moderate correlation of FL and FA for the extended (r = -0.89 and r = -0.74) and flexed knee (r = -0.76 and r = -0.78) position, pre and post stretching, respectively. It was concluded that the static stretching acutely affects the vastus lateralis muscle architecture only in the extended knee position, but not in the flexed knee position.


2001 ◽  
Vol 1 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Taija Finni ◽  
Shigeki Ikegaw ◽  
Vesa Lepola ◽  
Paavo Komi

Author(s):  
Tim J. van der Zee ◽  
Arthur D. Kuo

AbstractWhile ultrasound is a useful tool for visualizing muscle in vivo, traditional analysis involves substantial manual labor. Semi-automated algorithms have been introduced in recent years, reducing the amount of time required for extracting pennation angles and fascicle lengths from ultrasound images. Unfortunately, semi-automated algorithms still require some user actions and thereby subjective decision making. We here present a freely available, fully automated feature detection algorithm that involves Hessian filtering to highlight line-like objects within the ultrasound image. Hough transform is used to determine muscle fascicle angles and feature detection is used to determine the location and angle of aponeuroses. As a demonstration, we test the algorithm on ultrasound images obtained from vastus lateralis muscle in healthy individuals (N = 9) during isometric knee extension moment production (0 – 45 N-m) at three knee angles (15-25 deg). Pennation angle, muscle thickness and fascicle length vary with knee moment and knee angle in line with previous observations. Specifically, fascicle length decreases with larger knee moments and increases towards knee flexion. We expect the proposed algorithm to be useful for estimating muscle fascicle lengths during cyclic movements like human locomotion.


2004 ◽  
Vol 96 (3) ◽  
pp. 848-852 ◽  
Author(s):  
Masaki Ishikawa ◽  
Paavo V. Komi

This study examined whether the elasticity of the tendinous tissues plays an important role in human locomotion by improving the power output and efficiency of skeletal muscle. Ten subjects performed one-leg drop jumps (DJ) from different dropping heights with a constant rebound height. The fascicle length of the vastus lateralis muscle was measured by using real-time ultrasonography during DJ. In the braking phase of the DJ, fascicle lengthening decreased and the tendinous tissue lengthening increased with increased dropping intensity. In the subsequent push-off phase, the shortening of tendinous tissues increased with higher dropping intensity. The averaged electromyographic activities of the preactivation and braking phases increased and those of the push-off phase decreased as the drop height was increased. With higher dropping height but constant submaximal rebound jump, the stretched tendinous tissue length increased with less stretched fascicle during the braking phase. In the subsequent push-off phase, the recoil of tendinous tissues became greater. These results suggest that the increased prestretch intensity has considerable influence on the process of storage and subsequent recoil of the elastic energy during the stretch-shortening cycle action.


1997 ◽  
Vol 82 (1) ◽  
pp. 354-358 ◽  
Author(s):  
Tetsuo Fukunaga ◽  
Yoshiho Ichinose ◽  
Masamitsu Ito ◽  
Yasuo Kawakami ◽  
Senshi Fukashiro

Fukunaga, Tetsuo, Yoshiho Ichinose, Masamitsu Ito, Yasuo Kawakami, and Senshi Fukashiro. Determination of fascicle length and pennation in a contracting human muscle in vivo. J. Appl. Physiol. 82(1): 354–358, 1997.—We have developed a technique to determine fascicle length in human vastus lateralis muscle in vivo by using ultrasonography. When the subjects had the knee fully extended passively from a position of 110° flexion (relaxed condition), the fascicle length decreased from 133 to 97 mm on average. During static contractions at 10% of maximal voluntary contraction strength (tensed condition), fascicle shortening was more pronounced (from 126 to 67 mm), especially when the knee was closer to full extension. Similarly, as the knee was extended, the angle of pennation (fascicle angle, defined as the angle between fascicles and aponeurosis) increased (relaxed, from 14 to 18°; tensed, from 14 to 21°), and a greater increase in the pennation angle was observed in the tensed than in the relaxed condition when the knee was close to extension (<40°). We conclude that there are differences in fascicle lengths and pennation angles when the muscle is in a relaxed and isometrically tensed conditions and that the differences are affected by joint angles, at least at the submaximal contraction level.


2020 ◽  
Vol 22 (3) ◽  
pp. 8-16
Author(s):  
Kwang-Jin Lee ◽  
Ho-Seong Lee

OBJECTIVES The purpose of this study was to examine the effects of vastus lateralis muscle fascicle length on isokinetic muscle strength and physical fitness in collegiate athletes.METHODS 32 male collegiate athletes were classified into short fascicle length group (SFG, n=16) and long fascicle length group (LFG, n=16) by ultrasonic imaging. Both groups were tested for isokinetic muscular strength (peak torque, angle of peak torque and time to peak torque) and physical fitness (20 m sprint, T-drill, reaction time, side hop, square hop, figure of 8 hop, sergeant jump and Y-balance).RESULTS LFG showed a positive effect on pennation angle (<i>p</i>=.001), fascicle length (<i>p</i>=.001), angle of peak torque at 180°/sec (<i>p</i>=.037), time to peak torque at 90°/sec and 180°/sec (<i>p</i>=.036; <i>p</i>=.039), 20 m sprint (<i>p</i>=.016), T-drill (<i>p</i>=.005), side hop (<i>p</i>=.001) and square hop (<i>p</i>=.001), respectively compared to SFG. However, there was no difference between both groups of peak torque at 30°/sec, 90°/sec and 180°/sec, angle of peak torque at 30°/sec and 90°/sec, time to peak torque at 30°/sec, reaction time, sergeant jump and Y-balance.CONCLUSIONS These results found that long fascicle length of vastus lateralis muscle have excellent isokinetic muscle strength and physical fitness in collegiate athletes.


Sign in / Sign up

Export Citation Format

Share Document