Corrigendum to “Landscape determinants of spatio-temporal patterns of aerosol optical depth in the two most polluted metropolitans in the United States” [Sci. Total Environ. 609 (2017) 1556–1565]

2018 ◽  
Vol 626 ◽  
pp. 1502-1504
Author(s):  
Chenghao Wang ◽  
Chuyuan Wang ◽  
Soe W. Myint ◽  
Zhi-Hua Wang
2018 ◽  
Author(s):  
Prathyush Sambaturu ◽  
Parantapa Bhattacharya ◽  
Jiangzhuo Chen ◽  
Bryan Lewis ◽  
Madhav Marathe ◽  
...  

BACKGROUND Agencies such as the Centers for Disease Control and Prevention (CDC) currently release influenza-like illness incidence data, along with descriptive summaries of simple spatio-temporal patterns and trends. However, public health researchers, government agencies, as well as the general public, are often interested in deeper patterns and insights into how the disease is spreading, with additional context. Analysis by domain experts is needed for deriving such insights from incidence data. OBJECTIVE Our goal was to develop an automated approach for finding interesting spatio-temporal patterns in the spread of a disease over a large region, such as regions which have specific characteristics (eg, high incidence in a particular week, those which showed a sudden change in incidence) or regions which have significantly different incidence compared to earlier seasons. METHODS We developed techniques from the area of transactional data mining for characterizing and finding interesting spatio-temporal patterns in disease spread in an automated manner. A key part of our approach involved using the principle of minimum description length for representing a given target set in terms of combinations of attributes (referred to as clauses); we considered both positive and negative clauses, relaxed descriptions which approximately represent the set, and used integer programming to find such descriptions. Finally, we designed an automated approach, which examines a large space of sets corresponding to different spatio-temporal patterns, and ranks them based on the ratio of their size to their description length (referred to as the compression ratio). RESULTS We applied our methods using minimum description length to find spatio-temporal patterns in the spread of seasonal influenza in the United States using state level influenza-like illness activity indicator data from the CDC. We observed that the compression ratios were over 2.5 for 50% of the chosen sets, when approximate descriptions and negative clauses were allowed. Sets with high compression ratios (eg, over 2.5) corresponded to interesting patterns in the spatio-temporal dynamics of influenza-like illness. Our approach also outperformed description by solution in terms of the compression ratio. CONCLUSIONS Our approach, which is an unsupervised machine learning method, can provide new insights into patterns and trends in the disease spread in an automated manner. Our results show that the description complexity is an effective approach for characterizing sets of interest, which can be easily extended to other diseases and regions beyond influenza in the US. Our approach can also be easily adapted for automated generation of narratives.


2003 ◽  
Vol 42 (2) ◽  
pp. 266-278 ◽  
Author(s):  
John A. Augustine ◽  
Christopher R. Cornwall ◽  
Gary B. Hodges ◽  
Charles N. Long ◽  
Carlos I. Medina ◽  
...  

10.2196/12842 ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. e12842
Author(s):  
Prathyush Sambaturu ◽  
Parantapa Bhattacharya ◽  
Jiangzhuo Chen ◽  
Bryan Lewis ◽  
Madhav Marathe ◽  
...  

Background Agencies such as the Centers for Disease Control and Prevention (CDC) currently release influenza-like illness incidence data, along with descriptive summaries of simple spatio-temporal patterns and trends. However, public health researchers, government agencies, as well as the general public, are often interested in deeper patterns and insights into how the disease is spreading, with additional context. Analysis by domain experts is needed for deriving such insights from incidence data. Objective Our goal was to develop an automated approach for finding interesting spatio-temporal patterns in the spread of a disease over a large region, such as regions which have specific characteristics (eg, high incidence in a particular week, those which showed a sudden change in incidence) or regions which have significantly different incidence compared to earlier seasons. Methods We developed techniques from the area of transactional data mining for characterizing and finding interesting spatio-temporal patterns in disease spread in an automated manner. A key part of our approach involved using the principle of minimum description length for representing a given target set in terms of combinations of attributes (referred to as clauses); we considered both positive and negative clauses, relaxed descriptions which approximately represent the set, and used integer programming to find such descriptions. Finally, we designed an automated approach, which examines a large space of sets corresponding to different spatio-temporal patterns, and ranks them based on the ratio of their size to their description length (referred to as the compression ratio). Results We applied our methods using minimum description length to find spatio-temporal patterns in the spread of seasonal influenza in the United States using state level influenza-like illness activity indicator data from the CDC. We observed that the compression ratios were over 2.5 for 50% of the chosen sets, when approximate descriptions and negative clauses were allowed. Sets with high compression ratios (eg, over 2.5) corresponded to interesting patterns in the spatio-temporal dynamics of influenza-like illness. Our approach also outperformed description by solution in terms of the compression ratio. Conclusions Our approach, which is an unsupervised machine learning method, can provide new insights into patterns and trends in the disease spread in an automated manner. Our results show that the description complexity is an effective approach for characterizing sets of interest, which can be easily extended to other diseases and regions beyond influenza in the US. Our approach can also be easily adapted for automated generation of narratives.


2019 ◽  
Vol 264 ◽  
pp. 40-55 ◽  
Author(s):  
Marina Peña-Gallardo ◽  
Sergio M. Vicente-Serrano ◽  
Steven Quiring ◽  
Marc Svoboda ◽  
Jamie Hannaford ◽  
...  

2005 ◽  
Vol 22 (10) ◽  
pp. 1460-1472 ◽  
Author(s):  
John A. Augustine ◽  
Gary B. Hodges ◽  
Christopher R. Cornwall ◽  
Joseph J. Michalsky ◽  
Carlos I. Medina

Abstract The Surface Radiation budget (SURFRAD) network was developed for the United States in the middle 1990s in response to a growing need for more sophisticated in situ surface radiation measurements to support satellite system validation; numerical model verification; and modern climate, weather, and hydrology research applications. Operational data collection began in 1995 with four stations; two stations were added in 1998. Since its formal introduction to the research community in 2000, several additions and improvements have been made to the network’s products and infrastructure. To better represent the climate types of the United States, a seventh SURFRAD station was installed near Sioux Falls, South Dakota, in June 2003. In 2001, the instrument used for the diffuse solar measurement was replaced with a type of pyranometer that does not have a bias associated with infrared radiative cooling of its receiving surface. Subsequently, biased diffuse solar data from 1996 to 2001 were corrected using a generally accepted method. Other improvements include the implementation of a clear-sky diagnostic algorithm and associated products, better continuity in the ultraviolet-B (UVB) data record, a reduced potential for error in the downwelling infrared measurements, and development of an aerosol optical depth algorithm. Of these, only the aerosol optical depth product has yet to be finalized. All SURFRAD stations are members of the international Baseline Surface Radiation Network (BSRN). Data are submitted regularly in monthly segments to the BSRN archive in Zurich, Switzerland. Through this affiliation, the SURFRAD network became an official part of the Global Climate Observing System (GCOS) in April 2004.


2017 ◽  
Vol 5 (7) ◽  
pp. 771-788 ◽  
Author(s):  
A. Sankarasubramanian ◽  
J. L. Sabo ◽  
K. L. Larson ◽  
S. B. Seo ◽  
T. Sinha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document