scholarly journals Spatio-temporal assessment of Aerosol Optical Depth from Himawari-8 satellite data over Malaysia

Author(s):  
Nurul Amalin Fatihah Kamarul Zaman ◽  
Kasturi Devi Kanniah
2022 ◽  
Author(s):  
Samuel E. LeBlanc ◽  
Michal Segal-Rozenhaimer ◽  
Jens Redemann ◽  
Connor J. Flynn ◽  
Roy R. Johnson ◽  
...  

Abstract. Aerosol particles can be emitted, transported, removed, or transformed, leading to aerosol variability at scales impacting the climate (days to years and over hundreds of kilometers) or the air quality (hours to days and from meters to hundreds of kilometers). We present the temporal and spatial scales of changes in AOD (Aerosol Optical Depth), and aerosol size (using Angstrom Exponent; AE, and Fine-Mode-Fraction; FMF) over Korea during the 2016 KORUS-AQ (KORea-US Air Quality) atmospheric experiment. We use measurements and retrievals of aerosol optical properties from airborne instruments for remote sensing (4STAR; Spectrometers for Sky-Scanning Sun Tracking Atmospheric Research) and in situ (LARGE; NASA Langley Aerosol Research Group Experiment) on board the NASA DC-8, geostationary satellite (GOCI; Geostationary Ocean Color Imager; Yonsei aerosol retrieval (YAER) version 2) and reanalysis (MERRA-2; Modern-Era Retrospective Analysis for Research and Applications, version 2). Measurements from 4STAR when flying below 500 m, show an average AOD at 501 nm of 0.43 and an average AE of 1.15 with large standard deviation (0.32 and 0.26 for AOD and AE respectively) likely due to mixing of different aerosol types (fine and coarse mode). The majority of AODs due to fine mode aerosol is observed at altitudes lower than 2 km. Even though there are large variations, for 18 out of the 20 flight days, the column AOD measurements by 4STAR along the NASA DC-8 flight trajectories matches the south-Korean regional average derived from GOCI. We also observed that, contrary to prevalent understanding, AE and FMF are more spatially variable than AOD during KORUS-AQ, even when accounting for potential sampling biases by using Monte Carlo resampling. Averaging between measurements and model for the entire KORUS-AQ period, a reduction in correlation by 15 % is 65.0 km for AOD and shorter at 22.7 km for AE. While there are observational and model differences, the predominant factor influencing spatial-temporal homogeneity is the meteorological period. High spatio-temporal variability occur during the dynamic period (25–31 May), and low spatio-temporal variability occur during blocking Rex pattern (01–07 June). The changes in spatial variability scales between AOD and FMF/AE, while inter-related, indicate that microphysical processes that impact mostly the dominant aerosol size, like aerosol particle formation, growth, and coagulation, vary at shorter scales than the aerosol concentration processes that mostly impact AOD, like aerosol emission, transport, and removal.


2009 ◽  
Vol 47 (8) ◽  
pp. 2942-2956 ◽  
Author(s):  
R.C. Levy ◽  
G.G. Leptoukh ◽  
R. Kahn ◽  
V. Zubko ◽  
A. Gopalan ◽  
...  

2020 ◽  
Author(s):  
Carl Malings ◽  
Daniel Westervelt ◽  
Aliaksei Hauryliuk ◽  
Albert A. Presto ◽  
Andrew Grieshop ◽  
...  

Abstract. Low-cost particulate mass sensors provide opportunities to assess air quality at unprecedented spatial and temporal resolutions. Established traditional monitoring networks have limited spatial resolution and are frequently absent in less-developed countries (e.g. in sub-Saharan Africa). Satellites provide snapshots of regional air pollution, but require ground-truthing. Low-cost monitors can supplement and extend data coverage from these sources worldwide, providing a better overall air quality picture. We demonstrate such a multi-source data integration using two case studies. First, in Pittsburgh, Pennsylvania, both traditional monitoring and dense low-cost sensor networks are present, and are compared with satellite aerosol optical depth (AOD) data from NASA's MODIS system. We assess the performance of linear conversion factors for AOD to surface PM2.5 using both networks, and identify relative benefits provided by the denser low-cost sensor network. In particular, with 10 or more ground monitors in the city, there is a two-fold reduction in worst-case surface PM2.5 estimation mean absolute error compared to using only a single ground monitor. Second, in Rwanda, Malawi, and the Democratic Republic of the Congo, traditional ground-based monitoring is lacking and must be substituted with low-cost sensor data. Here, we assess the ability of regional-scale satellite retrievals and local-scale low-cost sensor measurements to complement each other. In Rwanda, we find that combining local ground monitoring information with satellite data provides a 40 % improvement (in terms of surface PM2.5 estimation accuracy) with respect to using ground monitoring data alone. Overall, we find that combining ground-based low-cost sensor and satellite data can improve and expand spatio-temporal air quality data coverage in both well-monitored and data-sparse regions.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1521
Author(s):  
Itai Kloog* ◽  
Alexandra Chudnovsky ◽  
Allan Just ◽  
Francesco Nordio ◽  
Petros Koutrakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document