Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region

2019 ◽  
Vol 666 ◽  
pp. 405-413 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Qi Li ◽  
Jian Jin ◽  
Xiaosan Luo ◽  
...  
2016 ◽  
Vol 23 (1) ◽  
pp. 435-445 ◽  
Author(s):  
Christopher K. Black ◽  
Sarah C. Davis ◽  
Tara W. Hudiburg ◽  
Carl J. Bernacchi ◽  
Evan H. DeLucia

2021 ◽  
Vol 22 (2) ◽  
pp. 109-115
Author(s):  
PARISHMITA DAS ◽  
R. L. DEKA ◽  
J. GOSWAMI ◽  
SMRITA BARUA

A pot experiment was conducted during kharif, 2018 inside CO2 Temperature Gradient Tunnels (CTGT) to assess the effect of elevated CO2 and temperature [T0: ambient temperature & ambient CO2, T1: elevated temperature (ambient +1°C) & elevated CO2 (ambient+25% of ambient) and T2: elevated temperature (ambient +2°C) & elevated CO2 (ambient + 50% of ambient)] under three different transplanting dates (D1: 25th June, D2: 10th July and D3: 25th July) on growth and yield of rice in Jorhat district of Assam. The result showed that occurrence of different phenological stages was earlier under elevated CO2-Temperature conditions resulting in reduction of crop duration by about 8-15 days. On the other hand,days to tiller initiation increased whereas days to panicle initiation, flowering and physiological maturity reduced with delay in transplanting. Yield attributing parameters were improved under elevated CO2-Temperature condition. With respect to dates of transplanting, D2 recorded higher number of panicles hill-1 (17.9) and higher filled grains panicle-1 (156.6). Higher grain yield (55.9g hill-1) was found under T2 which was at par with T1 and it was significant higher over the ambient. Grain yield was significantly reduced when transplanting was delayed after 10th July. The results revealed that the growth and yield of rice was found to be better under elevated CO2-temperature levels when transplanted on 10th July.


1996 ◽  
Vol 2 (1) ◽  
pp. 35-47 ◽  
Author(s):  
H. W. HUNT ◽  
E. T. ELLIOTT ◽  
J. K. DETLING ◽  
J. A. MORGAN ◽  
D.-X. CHEN

2016 ◽  
Vol 23 (19) ◽  
pp. 19847-19860 ◽  
Author(s):  
Wei Li ◽  
Xiaoguang Xu ◽  
Megumu Fujibayashi ◽  
Qigui Niu ◽  
Nobuyuki Tanaka ◽  
...  

2013 ◽  
Vol 33 (11) ◽  
pp. 1156-1176 ◽  
Author(s):  
M. Hall ◽  
B. E. Medlyn ◽  
G. Abramowitz ◽  
O. Franklin ◽  
M. Rantfors ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 1199-1236 ◽  
Author(s):  
C. Borchard ◽  
A. Engel

Abstract. Emiliania huxleyi (strain B 92/11) was exposed to different growth, CO2 and temperature conditions in phosphorous controlled chemostats, to investigate effects on organic carbon exudation, and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and for extracellular release (ER) were performed. Chemical analysis included amount and composition of high molecular weight dissolved combined carbohydrates (>1 kDa, HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 μatm pCO2 at 14 °C, and additionally 900 μatm pCO2 at 18 °C simulating a greenhouse ocean scenario. A reduction in growth rate from μ =0.3 d−1 to μ =0.1 d−1 induced the most profound effect on the performance of E. huxleyi, relative to the effect of elevated CO2 and temperature. At μ =0.3 d−1, PP was significantly higher at elevated CO2 and temperature. DO14C production correlated to PO14C production in all cultures, resulting in similar percentages of extracellular release (DO14C/PP × 100; PER) of averaged 3.74 ± 0.94%. At μ =0.1 d−1, PO14C decreased significantly, while exudation of DO14C increased, thus leading to a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at μ =0.1 d−1 at greenhouse conditions. Concentrations of HMW-dCCHO and pCCHO were generally higher at μ =0.1 d−1 compared to μ =0.3 d−1. At μ =0.3 d−1, pCCHO concentration increased significantly along with elevated CO2 and temperature. Despite of high PER, the percentage of HMW-dCCHO was smallest at greenhouse conditions. However, highest TEP-formation was observed under greenhouse conditions, together with a pronounced increase in pCCHO concentration, suggesting a stronger partitioning of PP from DOC to POC by coagulation of exudates. Our results imply that greenhouse condition will enhance exudation processes in E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.


Author(s):  
B.L. Jat ◽  
P. Pagaria ◽  
A.S. Jat ◽  
H.D. Choudhary ◽  
T. Khan ◽  
...  

The most important factor that affects the crop production in terms of nutritional content of foliar plants is the global climate change. Herbivore’s growth, development, survival and geographical distribution all are determined by elevated CO2 and temperature. The interactions between herbivores and plants have changed due to increasing level of CO2 and temperature. The effect of high CO2 and temperature on grain legume plant which change in to plant physiology (e.g., nutritional content, foliage biomass) and how it change in herbivory metabolism rate and food consumption rate. Plant injury is determined by two factors viz. resistance and tolerance and both are influenced by greater CO2 and temperature. Legumes are an important source of food and feed in the form of proteins and also improve the soil environment. The repercussions of the abiotic factors mentioned above needs discussion among the scientific community. We may able to limit the negative repercussions of stated factors in future breeding projects by harnessing the practical favourable impacts and by including such influences of elevated CO2 and temperature on pulses productivity. The extensive research is necessary to overcome the negative effects of high CO2 and temperature on insect-plant interaction.


Sign in / Sign up

Export Citation Format

Share Document