Coupling hydroclimate-hydraulic-sedimentation models to estimate flood inundation and sediment transport during extreme flood events under a changing climate

2020 ◽  
Vol 740 ◽  
pp. 140117
Author(s):  
Tongbi Tu ◽  
Ali Ercan ◽  
Kara J. Carr ◽  
M. Levent Kavvas ◽  
Toan Trinh ◽  
...  
2021 ◽  
Author(s):  
Rashmi Yadav ◽  
Sanjay M. Yadav

<p>In the era of increased extreme events, the assessment and management of the consequences become a necessity. Since the past twenty years floods affected more than two billion people worldwide. Urbanisation, overpopulation, insufficient drainage systems, spatio-temporal variation of rainfall events, climate change, unplanned settlements over the coastal areas and flood-prone areas can be few of the causes of floods. 1D, 2D and 1D/2D coupled hydro-dynamic models are developed to study such flood events. Some of the popular models used for the analysis of floods are HEC RAS, MIKE 11, MIKE 21, MIKE Urban, SWMM, SOBEK, FLO-2D and SWAT. These models use implicit and explicit finite difference schemes are used for solving one and two-dimensional hyperbolic partial differential equations. The data requirements and methodology for the development and assessment of modelling extreme flood events across the globe is highlighted and presented in the paper. Importance of developing the framework beforehand for optimising of model suitability, availability of data and objective function is reviewed. The present study discusses important 1D/2D coupled models case studies used for flood inundation studies.</p><p><strong>Keywords: </strong>Floods, extreme events, modelling, HEC RAS, shallow water equations.</p>


Mycorrhiza ◽  
2021 ◽  
Author(s):  
P. W. Thomas

AbstractVery little is known about the impact of flooding and ground saturation on ectomycorrhizal fungi (EcM) and increasing flood events are expected with predicted climate change. To explore this, seedlings inoculated with the EcM species Tuber aestivum were exposed to a range of flood durations. Oak seedlings inoculated with T. aestivum were submerged for between 7 and 65 days. After a minimum of 114-day recovery, seedling growth measurements were recorded, and root systems were destructively sampled to measure the number of existing mycorrhizae in different zones. Number of mycorrhizae did not display correlation with seedling growth measurements. Seven days of submersion resulted in a significant reduction in mycorrhizae numbers and numbers reduced most drastically in the upper zones. Increases in duration of submersion further impacted mycorrhizae numbers in the lowest soil zone only. T. aestivum mycorrhizae can survive flood durations of at least 65 days. After flooding, mycorrhizae occur in higher numbers in the lowest soil zone, suggesting a mix of resilience and recovery. The results will aid in furthering our understanding of EcM but also may aid in conservation initiatives as well as providing insight for those whose livelihoods revolve around the collection of EcM fruiting bodies or cropping of the plant partners.


1982 ◽  
Vol 108 (10) ◽  
pp. 1208-1212
Author(s):  
John R. Crippen
Keyword(s):  

2008 ◽  
Vol 5 (6) ◽  
pp. 3005-3032 ◽  
Author(s):  
J.-P. Suen

Abstract. Observed increases in the Earth's surface temperature bring with them associated changes in precipitation and atmospheric moisture that consequentially alter river flow regimes. This paper uses the Indicators of Hydrologic Alteration approach to examine climate-induced flow regime changes that can potentially affect freshwater ecosystems. Analyses of the annual extreme water conditions at 23 gauging stations throughout Taiwan reveal large alterations in recent years; extreme flood and drought events were more frequent in the period after 1991 than from 1961–1990, and the frequency and duration of the flood and drought events also show high fluctuation. Climate change forecasts suggest that such flow regime alterations are going to continue into the foreseeable future. Aquatic organisms not only feel the effects of anthropogenic damage to river systems, but they also face on-going threats of thermal and flow regime alterations associated with climate change. This paper calls attention to the issue, so that water resources managers can take precautionary measures that reduce the cumulative effects from anthropogenic influence and changing climate conditions.


Huellas ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 11-26
Author(s):  
Volonte Antonela ◽  
◽  
Veronica Gil ◽  
◽  
◽  
...  
Keyword(s):  

Author(s):  
Zhi Li ◽  
Mengye Chen ◽  
Shang Gao ◽  
Berry Wen ◽  
Jonathan Gourley ◽  
...  

Coupled Hydrologic & Hydraulic (H&H) models have been widely applied to simulate both discharge and flood inundation due to their complementary advantages, yet the H&H models oftentimes suffer from one-way and weak coupling and particularly disregarded run-on infiltration or re-infiltration. This could compromise the model accuracy, such as under-prediction (over-prediction) of subsurface water contents (surface runoff). In this study, we examine the H&H model performance differences between the scenarios with and without re-infiltration process in extreme events¬ – 100-year design rainfall and 500-year Hurricane Harvey event – from the perspective of flood depth, inundation extent, and timing. Results from both events underline that re-infiltration manifests discernable impacts and non-negligible differences for better predicting flood depth and extents, flood wave timings, and inundation durations. Saturated hydraulic conductivity and antecedent soil moisture are found to be the prime contributors to such differences. For the Hurricane Harvey event, the model performance is verified against stream gauges and high water marks, from which the re-infiltration scheme increases the Nash Sutcliffe Efficiency score by 140% on average and reduces maximum depth differences by 17%. This study highlights that the re-infiltration process should not be disregarded even in extreme flood simulations. Meanwhile, the new version of the H&H model – the Coupled Routing and Excess STorage inundation MApping and Prediction (CREST-iMAP) Version 1.1, which incorporates such two-way coupling and re-infiltration scheme, is released for public access.


Hydrobiologia ◽  
2008 ◽  
Vol 621 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Christiane Ilg ◽  
Francis Foeckler ◽  
Oskar Deichner ◽  
Klaus Henle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document