Land-use and climate controls on aquatic carbon cycling and phototrophs in karst lakes of southwest China

2021 ◽  
Vol 751 ◽  
pp. 141738
Author(s):  
Yuanyuan Liu ◽  
Guangjie Chen ◽  
Carsten Meyer-Jacob ◽  
Linpei Huang ◽  
Xiaolong Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Ren ◽  
Jinbo Zhang ◽  
Hamidou Bah ◽  
Christoph Müller ◽  
Zucong Cai ◽  
...  

AbstractSoil gross nitrogen (N) transformations could be influenced by land use change, however, the differences in inherent N transformations between different land use soils are still not well understood under subtropical conditions. In this study, an 15N tracing experiment was applied to determine the influence of land uses on gross N transformations in Regosols, widely distributed soils in Southwest China. Soil samples were taken from the dominant land use types of forestland and cropland. In the cropland soils, the gross autotrophic nitrification rates (mean 14.54 ± 1.66 mg N kg−1 day−1) were significantly higher, while the gross NH4+ immobilization rates (mean 0.34 ± 0.10 mg N kg−1 day−1) were significantly lower than those in the forestland soils (mean 1.99 ± 0.56 and 6.67 ± 0.74 mg N kg−1 day−1, respectively). The gross NO3− immobilization and dissimilatory NO3− reduction to NH4+ (DNRA) rates were not significantly different between the forestland and cropland soils. In comparison to the forestland soils (mean 0.51 ± 0.24), the cropland soils had significantly lower NO3− retention capacities (mean 0.01 ± 0.01), indicating that the potential N losses in the cropland soils were higher. The correlation analysis demonstrated that soil gross autotrophic nitrification rate was negatively and gross NH4+ immobilization rate was positively related to the SOC content and C/N ratio. Therefore, effective measures should be taken to increase soil SOC content and C/N ratio to enhance soil N immobilization ability and NO3− retention capacity and thus reduce NO3− losses from the Regosols.



2021 ◽  
Vol 121 ◽  
pp. 107193
Author(s):  
Shanshan Jiang ◽  
Xi Chen ◽  
Keith Smettem ◽  
Tiejun Wang


Chemosphere ◽  
2021 ◽  
pp. 132424
Author(s):  
Song Ling ◽  
Kuang Fuhong ◽  
Zhou Minghua ◽  
Zhu Bo ◽  
Ute Skiba
Keyword(s):  
Land Use ◽  


2020 ◽  
Vol 34 (25) ◽  
pp. 4831-4850
Author(s):  
Heleen A. Wit ◽  
Ahti Lepistö ◽  
Hannu Marttila ◽  
Hannah Wenng ◽  
Marianne Bechmann ◽  
...  


2019 ◽  
Vol 11 (23) ◽  
pp. 6752 ◽  
Author(s):  
Xiaoqing Zhao ◽  
Sinan Li ◽  
Junwei Pu ◽  
Peipei Miao ◽  
Qian Wang ◽  
...  

National land spatial planning is dominated by urban-agricultural-ecological functions and has become a Chinese national strategic issue. However, the three functional spaces have serious conflicts in the karst areas, causing inconsistencies in regional development and triggering poverty and a more serious situation for the ecological environment. In this study, we used the gray multi-objective dynamic programming model and the conversion of land use and its effects at small region extent model to simulate the developmental structures of future land use in the karst areas of Southwest China under a socioeconomic development scenario, an arable land protection scenario and an ecological security scenario. Finally, based on the coordination of the urban-agricultural-ecological functions, we used a functional space classification method to optimize the spatial structures of the national land space for 2035 year and to identify different functional areas. The results showed that the three scenarios with different objectives had differences in the quantities and spatial structures of land use but that the area of forestland was the largest and the area of water was the smallest in each scenario. The optimization of the national land space was divided into seven functional areas—urban space, agricultural space, ecological space, urban-agricultural space, urban-ecological space, agricultural-ecological space and urban-agricultural-ecological space. The ecological space was the largest and the urban-ecological space was the smallest among seven functional areas. The different types of functional spaces had significant differentiation characteristics in the layouts. The urban-agricultural space, urban-ecological space, agricultural-ecological space and urban-agricultural-ecological space can effectively alleviate the impacts of human activities and agricultural production activities in karst areas, promote the improvement of rocky desertification and improve the quality of the regional ecological environment. The results of this research can provide support for decisions about the balanced development of the national land space and the improvement of environmental quality in the karst areas.



2020 ◽  
Vol 125 (4) ◽  
Author(s):  
Meta Francis Justine ◽  
Kaiwen Pan ◽  
Nambajimana Jean de Dieu ◽  
Fidele Karamage ◽  
Zebene Tadesse ◽  
...  


2019 ◽  
Vol 8 (12) ◽  
pp. 522 ◽  
Author(s):  
Xin Liu ◽  
Zuolin Xiao ◽  
Rui Liu

The urban heat island (UHI) phenomenon has been identified and studied for over two centuries. As one of the most important factors, land use, in terms of both composition and configuration, strongly influences the UHI. As a result of the availability of detailed data, the modeling of the residual spatio-temporal autocorrelation of UHI, which remains after the land use effects have been removed, becomes possible. In this study, this key statistical problem is tackled by a spatio-temporal Bayesian hierarchical model (BHM). As one of the hottest areas in China, southwest China is chosen as our study area. Results from this study show that the difference of UHI levels between different cities in southwest China becomes large from 2000 to 2015. The variation of the UHI level is dominantly driven by temporal autocorrelation, rather than spatial autocorrelation. Compared with the composition of land use, the configuration has relatively minor influence upon UHI, due to the terrain in the study area. Furthermore, among all land use types, the water body is the most important UHI mitigation factor at the regional scale.



Sign in / Sign up

Export Citation Format

Share Document