reactive nitrogen species
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 131)

H-INDEX

74
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Supapid Eknikom ◽  
Ryo Nasuno ◽  
Hiroshi Takagi

Abstract Protein tyrosine nitration (PTN), in which tyrosine (Tyr) residues on proteins are converted into 3-nitrotyrosine (NT), is one of the post-translational modifications mediated by reactive nitrogen species (RNS). Many recent studies have reported that PTN contributed to signaling systems by altering the structures and/or functions of proteins. This study aimed to investigate connections between PTN and the inhibitory effect of nitrite-derived RNS on fermentation ability using the yeast Saccharomyces cerevisiae. The results indicated that RNS inhibited the ethanol production of yeast cells with increased intracellular pyruvate content. We also found that RNS decreased the activities of pyruvate decarboxylase (PDC) as a critical enzyme involved in ethanol production. Our proteomic analysis revealed that the main PDC isozyme Pdc1 underwent the PTN modification at Tyr38, Tyr157, and Tyr344. The biochemical analysis using the recombinant purified Pdc1 enzyme indicated that PTN at Tyr157 or Tyr344 significantly reduced the Pdc1 activity. Interestingly, the substitution of Tyr157 or Tyr344 to phenylalanine, which is no longer converted into NT, recovered the ethanol production under the RNS treatment conditions. These findings suggest that nitrite impairs the fermentation ability of yeast by inhibiting the Pdc1 activity via its PTN modification at Tyr157 and Tyr344 of Pdc1.


2022 ◽  
Author(s):  
Joe H. C. Chau ◽  
Ruoyao Zhang ◽  
Michelle M. S. Lee ◽  
Kristy W. K. Lam ◽  
Eric Y. Yu ◽  
...  

Peroxynitrite (ONOO–) is a potent reactive nitrogen species that plays a critical mediator in liver injury elicited by drugs such as acetaminophen (APAP). At a therapeutic dosage, most APAP is...


2021 ◽  
pp. 544-555
Author(s):  
Jelena Radovanovic ◽  
Katarina Banjac ◽  
Milan Obradovic ◽  
Esma R. Isenovic

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a fundamental role in regulating endothelial function and vascular tone in the physiological conditions of a vascular system. However, oxidative stress has detrimental effects on human health, and numerous studies confirmed that high ROS/RNS production contributes to the initiation and progression of cardiovascular diseases. The antioxidant defense has an essential role in the homeostatic functioning of the vascular endothelial system. Endogenous antioxidative defense includes various molecules and enzymes such as superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. Together all these antioxidative enzymes are essential for defense against harmful ROS features. ROS are mainly generated from redox-active compounds involved in the mitochondrial respiratory chain. Thus, targeting antioxidative enzymes and mitochondria oxidative balance may be a promising approach for vascular diseases occurrence and treatment. This review summarized the most recent research on the regulation of antioxidative enzymes in vascular diseases.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Yan Zhang ◽  
Suliman Khan ◽  
Yang Liu ◽  
Rabeea Siddique ◽  
Ruiyi Zhang ◽  
...  

Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity; the mortality rate ranges from 40% at 1 month to 54% at 1 year; only 12%−39% achieve good outcomes and functional independence. ICH affects nearly 2 million patients worldwide annually. In ICH development, the blood leakage from ruptured vessels generates sequelae of secondary brain injury (SBI). This mechanism involves activated astrocytes and microglia, generation of reactive oxygen species (ROS), the release of reactive nitrogen species (RNS), and disrupted blood brain barrier (BBB). In addition, inflammatory cytokines and chemokines, heme compounds, and products of hematoma are accumulated in the extracellular spaces, thereby resulting in the death of brain cells. Recent evidence indicates that connexins regulate microglial activation and their phenotypic transformation. Moreover, communications between neurons and glia via gap junctions have crucial roles in neuroinflammation and cell death. A growing body of evidence suggests that, in addition to gap junctions, hemichannels (composed of connexins and pannexins) play a key role in ICH pathogenesis. However, the precise connection between connexin and pannexin channels and ICH remains to be resolved. This review discusses the pathological roles of gap junctions and hemichannels in SBI following ICH, with the intent of discovering effective therapeutic options of strategies to treat ICH.


2021 ◽  
Author(s):  
Junsu Gil ◽  
Meehye Lee ◽  
Jeonghwan Kim ◽  
Gangwoong Lee ◽  
Joonyoung Ahn

Abstract. Nitrous acid (HONO), one of the reactive nitrogen oxides (NOy), plays an important role in the formation of ozone (O3) and fine aerosols (PM2.5) in the urban atmosphere. In this study, a simulation model of Reactive Nitrogen species using Deep neural network model (RND) was constructed to calculate the HONO mixing ratios through a deep learning technique using measured variables. A Python-based Deep Neural Network (DNN) was trained, validated, and tested with HONO measurement data obtained in Seoul during the warm months from 2016 to 2019. A k-fold cross validation and test results confirmed the performance of RND v1.0 with an Index Of Agreement (IOA) of 0.79 ~ 0.89 and a Mean Absolute Error (MAE) of 0.21 ~ 0.31 ppbv. The RNDV1.0 adequately represents the main characteristics of HONO and thus, RND v1.0 is proposed as a supplementary model for calculating the HONO mixing ratio in a high- NOx environment.


2021 ◽  
Vol 22 (23) ◽  
pp. 12982
Author(s):  
Angelika Artelska ◽  
Monika Rola ◽  
Michał Rostkowski ◽  
Marlena Pięta ◽  
Jakub Pięta ◽  
...  

Azanone (HNO) is an elusive electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present a comparative kinetic study of HNO reactivity toward selected cyclic C-nucleophiles under aqueous conditions at pH 7.4. We applied the competition kinetics method, which is based on the use of a fluorescein-derived boronate probe FlBA and two parallel HNO reactions: with the studied scavenger or with O2 (k = 1.8 × 104 M−1s−1). We determined the second-order rate constants of HNO reactions with 13 structurally diverse C-nucleophiles (k = 33–20,000 M−1s−1). The results show that the reactivity of HNO toward C-nucleophiles depends strongly on the structure of the scavenger. The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with C-nucleophiles is provided.


Sign in / Sign up

Export Citation Format

Share Document