ambient concentrations
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 59)

H-INDEX

46
(FIVE YEARS 6)

Author(s):  
Shakhaoat Hossain ◽  
Wenwei Che ◽  
Alexis Kai-Hon Lau

Exposure surrogates, such as air quality measured at a fixed-site monitor (FSM) or residence, are typically used for health estimates. However, people spend various amounts of time in different microenvironments, including the home, office, outdoors and in transit, where they are exposed to different magnitudes of particle and gaseous air pollutants. Health risks caused by air pollution exposure differ among individuals due to differences in activity, microenvironmental concentration, as well as the toxicity of pollutants. We evaluated individual and combined added health risks (AR) of exposure to PM2.5, NO2, and O3 for 21 participants in their daily life based on real-world personal exposure measurements. Exposure errors from using surrogates were quantified. Inter- and intra-individual variability in health risks and key contributors in variations were investigated using linear mixed-effects models and correlation analysis, respectively. Substantial errors were found between personal exposure concentrations and ambient concentrations when using air quality measurements at either FSM or the residence location. The mean exposure errors based on the measurements taken at either the FSM or residence as exposure surrogates was higher for NO2 than PM2.5, because of the larger spatial variability in NO2 concentrations in urban areas. The daily time-integrated AR for the combined PM2.5, NO2, and O3 (TIARcombine) ranged by a factor of 2.5 among participants and by a factor up to 2.5 for a given person across measured days. Inter- and intra-individual variability in TIARcombine is almost equally important. Several factors were identified to be significantly correlated with daily TIARcombine, with the top five factors, including PM2.5, NO2 and O3 concentrations at ‘home indoor’, O3 concentrations at ‘office indoor’ and ambient PM2.5 concentrations. The results on the contributors of variability in the daily TIARcombine could help in targeting interventions to reduce daily health damage related to air pollutants.


2021 ◽  
Vol 21 (22) ◽  
pp. 17167-17183
Author(s):  
Jean-Eudes Petit ◽  
Jean-Charles Dupont ◽  
Olivier Favez ◽  
Valérie Gros ◽  
Yunjiang Zhang ◽  
...  

Abstract. Since early 2020, the COVID-19 pandemic has led to lockdowns at national scales. These lockdowns resulted in large cuts of atmospheric pollutant emissions, notably related to the vehicular traffic source, especially during spring 2020. As a result, air quality changed in manners that are still currently under investigation. The robust quantitative assessment of the impact of lockdown measures on ambient concentrations is however hindered by weather variability. In order to circumvent this difficulty, an innovative methodology has been developed. The Analog Application for Air Quality (A3Q) method is based on the comparison of each day of lockdown to a group of analog days having similar meteorological conditions. The A3Q method has been successfully evaluated and applied to a comprehensive in situ dataset of primary and secondary pollutants obtained at the SIRTA observatory, a suburban background site of the megacity of Paris (France). The overall slight decrease of submicron particulate matter (PM1) concentrations (−14 %) compared to business-as-usual conditions conceals contrasting behaviors. Primary traffic tracers (NOx and traffic-related carbonaceous aerosols) dropped by 42 %–66 % during the lockdown period. Further, the A3Q method enabled us to characterize changes triggered by NOx decreases. Particulate nitrate and secondary organic aerosols (SOAs), two of the main springtime aerosol components in northwestern Europe, decreased by −45 % and −25 %, respectively. A NOx relationship emphasizes the interest of NOx mitigation policies at the regional (i.e., city) scale, although long-range pollution advection sporadically overcompensated for regional decreases. Variations of the oxidation state of SOA suggest discrepancies in SOA formation processes. At the same time, the expected ozone increase (+20 %) underlines the negative feedback of NO titration. These results provide a quasi-comprehensive observation-based insight for mitigation policies regarding air quality in future low-carbon urban areas.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 859
Author(s):  
María Soto-Herranz ◽  
Mercedes Sánchez-Báscones ◽  
Juan Manuel Antolín-Rodríguez ◽  
Pablo Martín-Ramos

Gas-permeable membrane (GPM) technology is a possible solution to reduce ammonia (NH3) emissions from livestock housing. This paper presents the results obtained with an NH3-capture prototype based on the use of expanded polytetrafluoroethylene (ePTFE) membranes in real conditions in a gestating sow house and a free-range laying hen house, comparing them with the results obtained in controlled laboratory conditions for the same type of waste. The NH3 present in the air of the livestock housing was captured by reaction with an acidic solution flowing inside the membranes. The periods of continuous operation of the pilot plant were 232 days at the pig farm and 256 days at the poultry farm. The NH3 recovery rate at the end of those periods was 2.3 and 0.4 g TAN·m−2·d−1 in the pig and the poultry farms, respectively. The limiting factor for the capture process was the NH3 concentration in the air, with the highest recovery occurring in the most concentrated atmosphere. Differences in NH3 capture were observed between seasons and farms, with capture efficiencies of 1.62 and 0.33 g·m−2·d−1 in summer and 3.85 and 1.20 g·m−2·d−1 in winter for pig and poultry farms, respectively. The observed differences were mainly due to the higher ventilation frequency in the summer months, which resulted in a lower NH3 concentration inside the houses compared to the winter months. This is especially important when considering the real applicability of this technology. The results obtained suggest that GPM technology holds promise for limiting NH3 emissions from livestock housing with NH3 ambient concentrations close to 20 ppm or as part of manure storage facilities, given that it allows for recovery of nitrogen in a stable and concentrated solution, which can be used as a fertilizer.


2021 ◽  
pp. 29-38
Author(s):  
Nuttakit Sukjit ◽  
Sarawut Thepanondh ◽  
Suphaphat K wonpongsagoon ◽  
Wanida Jinsart ◽  
Lalidaporn Punya ◽  
...  

Emissions and ambient concentrations of 1,3 butadiene released from the synthetic rubber industries in the largest petroleum and petrochemical complex in Thailand were evaluated in this study. The industrial emissions in this analysis were those emitted from process fugitive, combustion stack, flare, and wastewater treatment facility. It was found that wastewater treatment units were the largest emission source among other potential sources. The contribution of emission from wastewater treatment plants were about 92% of total 1,3 butadiene emission. The extent and magnitude of 1,3 butadiene in ambient air were further evaluated through the simulation of AERMOD dispersion model using these emission data together with local meteorological and topographical characteristics. Predicted annual 1,3 butadiene concentrations at every receptor were lower than its ambient air quality standard (< 0.33 μg m-3). Source apportionment analysis was performed with the objective to reveal the contribution of each emission source to the ambient concentrations at each receptor. Analytical results indicated that wastewater treatment units were the major emission source affected to the environmental concentrations of 1,3 butadiene in the study area. Evaluation of the potential adverse health impact of this chemical revealed that there may be a potential carcinogenic risk from inhalation exposure of 1,3 butadiene. Therefore, an effort in controlling emission of 1,3 butadiene should be given the priority to effectively manage the level of this compound in the environment.


2021 ◽  
Vol 27 (8) ◽  
pp. 2224-2234
Author(s):  
Kraiwuth Kallawicha ◽  
Pokkate Wongsasuluk ◽  
Chuphan Chompuchan ◽  
Wanich Suksatan ◽  
H. Jasmine Chao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document