Zero-valent iron enhanced in-situ advanced anaerobic digestion for the removal of antibiotics and antibiotic resistance genes in sewage sludge

2021 ◽  
Vol 754 ◽  
pp. 142077 ◽  
Author(s):  
Haidong Zhou ◽  
Zhengcao Cao ◽  
Minquan Zhang ◽  
Zhenxi Ying ◽  
Lixin Ma
PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0237283
Author(s):  
Sky Redhead ◽  
Jeroen Nieuwland ◽  
Sandra Esteves ◽  
Do-Hoon Lee ◽  
Dae-Wi Kim ◽  
...  

Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10–12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment.


2021 ◽  
Vol 194 ◽  
pp. 116926
Author(s):  
Hui Yun ◽  
Bin Liang ◽  
Yangcheng Ding ◽  
Si Li ◽  
Zhenfei Wang ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 502
Author(s):  
Andrea Visca ◽  
Anna Barra Caracciolo ◽  
Paola Grenni ◽  
Luisa Patrolecco ◽  
Jasmin Rauseo ◽  
...  

Anaerobic digestion is one of the best ways to re-use animal manure and agricultural residues, through the production of combustible biogas and digestate. However, the use of antibiotics for preventing and treating animal diseases and, consequently, their residual concentrations in manure, could introduce them into anaerobic digesters. If the digestate is applied as a soil fertilizer, antibiotic residues and/or their corresponding antibiotic resistance genes (ARGs) could reach soil ecosystems. This work investigated three common soil emerging contaminants, i.e., sulfamethoxazole (SMX), ciprofloxacin (CIP), enrofloxacin (ENR), their ARGs sul1, sul2, qnrS, qepA, aac-(6′)-Ib-cr and the mobile genetic element intI1, for one year in a full scale anaerobic plant. Six samplings were performed in line with the 45-day hydraulic retention time (HRT) of the anaerobic plant, by collecting input and output samples. The overall results show both antibiotics and ARGs decreased during the anaerobic digestion process. In particular, SMX was degraded by up to 100%, ENR up to 84% and CIP up to 92%, depending on the sampling time. In a similar way, all ARGs declined significantly (up to 80%) in the digestate samples. This work shows how anaerobic digestion can be a promising practice for lowering antibiotic residues and ARGs in soil.


Sign in / Sign up

Export Citation Format

Share Document