Impacts of cryogenic sampling processes on iron mineral coatings in contaminated sediment

Author(s):  
Han Hua ◽  
Xin Yin ◽  
Maria Irianni Renno ◽  
Thomas C. Sale ◽  
Richard Landis ◽  
...  
2020 ◽  
Vol 4 (12) ◽  
pp. 2337-2346
Author(s):  
Han Hua ◽  
Xin Yin ◽  
James A. Dyer ◽  
Richard Landis ◽  
Lisa Axe

TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.


1998 ◽  
Vol 37 (6-7) ◽  
pp. 331-336 ◽  
Author(s):  
Stephen Garbaciak ◽  
Philip Spadaro ◽  
Todd Thornburg ◽  
Richard Fox

Sequential risk mitigation approaches the remediation of contaminated sediments in three phases designed to: (1) immediately reduce the ecological and human health risks associated with high levels of contamination, using methods such as the confinement or capping of high-risk materials; (2) reduce the risks associated with moderate levels of pollution to a minimum, on a less urgent schedule and at a lower cost; and (3) address areas of limited contamination through a combination of natural recovery and enhanced natural recovery (to aid or speed those natural processes). Natural recovery, the reduction of contaminant concentrations through natural processes, is based on the practical observation that overall ecosystem recovery appears to be largely a function of time. Sediment decomposition and the mixing of new and old sediments by bottom-dwelling organisms can both contribute to reduced contaminant concentrations. Knowledge of these processes--sediment decomposition, sediment mixing by bottom-dwelling organisms, and chemical residence time is critical in the development of appropriate ecosystem recovery and waste management strategies. Evaluations to support natural recovery predictions are designed to collect and evaluate information necessary to determine whether surface sediment chemical concentrations, with adequate source control, will reach the cleanup standards within a ten-year period.


2016 ◽  
Vol 88 (9) ◽  
pp. 847-851 ◽  
Author(s):  
Susanne C. Rostmark ◽  
Manuel Colombo ◽  
Sven Knutsson ◽  
Gunilla Öberg

Author(s):  
Yaima Barrios San Martín ◽  
Heidy F. Toledo León ◽  
Arelis Ábalos Rodríguez ◽  
Ana M. Marqués ◽  
Maria I. Sánchez López

2021 ◽  
pp. 117333
Author(s):  
Yuying Zhang ◽  
Claudia Labianca ◽  
Liang Chen ◽  
Sabino De Gisi ◽  
Michele Notarnicola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document