Improved Agricultural Water Management in Data-scarce Semi-arid Watersheds: Value of Integrating Remotely Sensed Leaf Area Index in Hydrological Modeling

Author(s):  
Manashi Paul ◽  
Adnan Rajib ◽  
Masoud Negahban-Azar ◽  
Adel Shirmohammadi ◽  
Puneet Srivastava
2020 ◽  
Vol 12 (13) ◽  
pp. 2148 ◽  
Author(s):  
Adnan Rajib ◽  
I Luk Kim ◽  
Heather E. Golden ◽  
Charles R. Lane ◽  
Sujay V. Kumar ◽  
...  

Traditional watershed modeling often overlooks the role of vegetation dynamics. There is also little quantitative evidence to suggest that increased physical realism of vegetation dynamics in process-based models improves hydrology and water quality predictions simultaneously. In this study, we applied a modified Soil and Water Assessment Tool (SWAT) to quantify the extent of improvements that the assimilation of remotely sensed Leaf Area Index (LAI) would convey to streamflow, soil moisture, and nitrate load simulations across a 16,860 km2 agricultural watershed in the midwestern United States. We modified the SWAT source code to automatically override the model’s built-in semiempirical LAI with spatially distributed and temporally continuous estimates from Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to a “basic” traditional model with limited spatial information, our LAI assimilation model (i) significantly improved daily streamflow simulations during medium-to-low flow conditions, (ii) provided realistic spatial distributions of growing season soil moisture, and (iii) substantially reproduced the long-term observed variability of daily nitrate loads. Further analysis revealed that the overestimation or underestimation of LAI imparted a proportional cascading effect on how the model partitions hydrologic fluxes and nutrient pools. As such, assimilation of MODIS LAI data corrected the model’s LAI overestimation tendency, which led to a proportionally increased rootzone soil moisture and decreased plant nitrogen uptake. With these new findings, our study fills the existing knowledge gap regarding vegetation dynamics in watershed modeling and confirms that assimilation of MODIS LAI data in watershed models can effectively improve both hydrology and water quality predictions.


2020 ◽  
Vol 12 (19) ◽  
pp. 3121
Author(s):  
Roya Mourad ◽  
Hadi Jaafar ◽  
Martha Anderson ◽  
Feng Gao

Leaf area index (LAI) is an essential indicator of crop development and growth. For many agricultural applications, satellite-based LAI estimates at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions, Sentinel 2 (ESA) and Landsat 8 (NASA), provides this opportunity. In this study, we evaluated the leaf area index generated from three methods, namely, existing vegetation index (VI) relationships applied to Harmonized Landsat-8 and Sentinel-2 (HLS) surface reflectance produced by NASA, the SNAP biophysical model, and the THEIA L2A surface reflectance products from Sentinel-2. The intercomparison was conducted over the agricultural scheme in Bekaa (Lebanon) using a large set of in-field LAIs and other biophysical measurements collected in a wide variety of canopy structures during the 2018 and 2019 growing seasons. The major studied crops include herbs (e.g., cannabis: Cannabis sativa, mint: Mentha, and others), potato (Solanum tuberosum), and vegetables (e.g., bean: Phaseolus vulgaris, cabbage: Brassica oleracea, carrot: Daucus carota subsp. sativus, and others). Additionally, crop-specific height and above-ground biomass relationships with LAIs were investigated. Results show that of the empirical VI relationships tested, the EVI2-based HLS models statistically performed the best, specifically, the LAI models originally developed for wheat (RMSE:1.27), maize (RMSE:1.34), and row crops (RMSE:1.38). LAI derived through European Space Agency’s (ESA) Sentinel Application Platform (SNAP) biophysical processor underestimated LAI and provided less accurate estimates (RMSE of 1.72). Additionally, the S2 SeLI LAI algorithm (from SNAP biophysical processor) produced an acceptable accuracy level compared to HLS-EVI2 models (RMSE of 1.38) but with significant underestimation at high LAI values. Our findings show that the LAI-VI relationship, in general, is crop-specific with both linear and non-linear regression forms. Among the examined indices, EVI2 outperformed other vegetation indices when all crops were combined, and therefore it can be identified as an index that is best suited for a unified algorithm for crops in semi-arid irrigated regions with heterogeneous landscapes. Furthermore, our analysis shows that the observed height-LAI relationship is crop-specific and essentially linear with an R2 value of 0.82 for potato, 0.79 for wheat, and 0.50 for both cannabis and tobacco. The ability of the linear regression to estimate the fresh and dry above-ground biomass of potato from both observed height and LAI was reasonable, yielding R2: ~0.60.


2008 ◽  
Author(s):  
Rim Ha ◽  
Hyung-Jin Shin ◽  
Geun-Ae Park ◽  
Seong-Joon Kim

2011 ◽  
Vol 151 (5) ◽  
pp. 565-574 ◽  
Author(s):  
Michael Sprintsin ◽  
S. Cohen ◽  
K. Maseyk ◽  
E. Rotenberg ◽  
J. Grünzweig ◽  
...  

2004 ◽  
Author(s):  
Charles L. Walthall ◽  
Wayne P. Dulaney ◽  
Martha C. Anderson ◽  
John Norman ◽  
Hongliang Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document