scholarly journals Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater

Author(s):  
Shotaro Torii ◽  
Wakana Oishi ◽  
Yifan Zhu ◽  
Ocean Thakali ◽  
Bikash Malla ◽  
...  
1989 ◽  
Vol 63 (5) ◽  
pp. 2198-2203 ◽  
Author(s):  
E Rodríguez-Cerezo ◽  
A Moya ◽  
F García-Arenal

2019 ◽  
Vol 493 ◽  
pp. S336
Author(s):  
A. González Raya ◽  
R. Coca Zuñiga ◽  
E. Martín Sálido ◽  
G. Callejón Martín ◽  
A. Léndinez Ramirez ◽  
...  

2004 ◽  
Vol 85 (7) ◽  
pp. 2077-2085 ◽  
Author(s):  
P. Gilardi ◽  
I. García-Luque ◽  
M. T. Serra

In Capsicum, the resistance conferred by the L 2 gene is effective against all of the pepper-infecting tobamoviruses except Pepper mild mottle virus (PMMoV), whereas that conferred by the L 4 gene is effective against them all. These resistances are expressed by a hypersensitive response, manifested through the formation of necrotic local lesions (NLLs) at the primary site of infection. The Capsicum L 2 gene confers resistance to Paprika mild mottle virus (PaMMV), while the L 4 gene is effective against both PaMMV and PMMoV. The PaMMV and PMMoV coat proteins (CPs) were expressed in Capsicum frutescens (L 2 L 2) and Capsicum chacoense (L 4 L 4) plants using the heterologous Potato virus X (PVX)-based expression system. In C. frutescens (L 2 L 2) plants, the chimeric PVX virus containing the PaMMV CP was localized in the inoculated leaves and produced NLLs, whereas the chimeric PVX containing the PMMoV CP infected the plants systemically. Thus, the data indicated that the PaMMV CP is the only tobamovirus factor required for the induction of the host response mediated by the Capsicum L 2 resistance gene. In C. chacoense (L 4 L 4) plants, both chimeric viruses were localized to the inoculated leaves and produced NLLs, indicating that either PaMMV or PMMoV CPs are required to elicit the L 4 gene-mediated host response. In addition, transient expression of PaMMV CP into C. frutescens (L 2 L 2) leaves and PMMoV CP into C. chacoense (L 4 L 4) leaves by biolistic co-bombardment with a β-glucuronidase reporter gene led to the induction of cell death and the expression of host defence genes in both hosts. Thus, the tobamovirus CP is the elicitor of the Capsicum L 2 and L 4 gene-mediated hypersensitive response.


Virology ◽  
1984 ◽  
Vol 137 (2) ◽  
pp. 297-304 ◽  
Author(s):  
Dennis P. Jackson ◽  
Dean H. Percy ◽  
Vincent L. Morris

2001 ◽  
Vol 75 (6) ◽  
pp. 2792-2802 ◽  
Author(s):  
Dawn K. Krueger ◽  
Sean M. Kelly ◽  
Daniel N. Lewicki ◽  
Rosanna Ruffolo ◽  
Thomas M. Gallagher

ABSTRACT The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.


2012 ◽  
Vol 48 (6) ◽  
pp. 595-599 ◽  
Author(s):  
Youngsun Kwon ◽  
Md. Alamgir Kabir ◽  
Hong Wei Wang ◽  
Thirupathi Karuppanapandian ◽  
Jun-Cheol Moon ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Masaaki Kitajima ◽  
Hannah P. Sassi ◽  
Jason R. Torrey

2001 ◽  
Vol 75 (6) ◽  
pp. 2803-2809 ◽  
Author(s):  
Andreas F. Kolb ◽  
Lecia Pewe ◽  
John Webster ◽  
Stanley Perlman ◽  
C. Bruce A. Whitelaw ◽  
...  

ABSTRACT Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine β-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis.


Sign in / Sign up

Export Citation Format

Share Document