murine hepatitis virus
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 34)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Tautvydas Shuipys ◽  
Naim Montazeri

Murine hepatitis virus (MHV) is a non-human pathogen betacoronavirus that is evolutionarily and structurally related to the human pathogenic viruses SARS-CoV, MERS-CoV, and SARS-CoV-2. However, unlike the human SARS and MERS viruses, MHV requires a biosafety level 2 laboratory for propagating and safe handling, making it a potentially suitable surrogate virus. Despite this utility, few papers discussed the propagation and quantification of MHV using cell lines readily available in biorepositories making their implementations not easily reproducible. This article provides protocols for propagating and quantifying MHV-A59 using the recommended NCTC clone 1469 and clone 929 cell lines from American Type Culture Collection (ATCC). More specifically, the methods detail reviving cells, routine cell passaging, preparing freeze stocks, infection of NCTC clone 1469 with MHV and subsequent harvesting, and plaque assay quantification of MHV using NCTC clone 929 cells. Using these protocols, a BSL-2 laboratory equipped for cell culture work would generate at least 6.0 log plaque-forming units (PFU) per mL of MHV lysate and provide an optimized overlay assay using either methylcellulose or agarose as overlays for the titration of infectious virus particles. The protocols described here are intended to be utilized for persistence and inactivation studies of coronaviruses.


2021 ◽  
Author(s):  
Ana C. Puhl ◽  
Giovanni F. Gomes ◽  
Samara Damasceno ◽  
Ethan J. Fritch ◽  
James A. Levi ◽  
...  

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 uM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-a;, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1b; caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2383
Author(s):  
Huawei Xia ◽  
Zeming Zhang ◽  
Fuping You

Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


2021 ◽  
Author(s):  
Austin Blake Featherstone ◽  
Sapna Chitlapilly Dass

Meat processing plants have been at the center of the SARS-CoV-2 pandemic. There are several factors that contribute to the persistence of SARS-CoV-2 in meat processing plants and one of the factors is the formation of a multi-species biofilm with virus. Biofilm can act as a reservoir in protecting, harboring, and dispersing SARS-CoV-2 from biofilm to the meat processing facility environment. We used Murine Hepatitis Virus (MHV) as a surrogate for SARS-CoV-2 virus and meat processing facility drain samples to develop mixed-species biofilms on commonly found materials in processing facilities (Stainless-Steel (SS), PVC and tiles). The results showed that MHV was able to integrate into the environmental biofilm and survived for a period of 5 days at 7C. There was no significate difference between the viral-environmental biofilm biovolumes developed on different materials SS, PVC, and tiles. There was a 2-fold increase in the virus-environmental biofilm biovolume when compared to environmental biofilm by itself. These results indicate a complex virus-environmental biofilm interaction which is providing enhanced protection for the survival of viral particles with the environmental biofilm community.


2021 ◽  
Author(s):  
Huawei Xia ◽  
Zeming Zhang ◽  
Fuping You

Murine hepatitis virus strain A59 (MHV-A59) belongs to the β-coronavirus and is considered as a representative model for studying coronavirus infection. MHV-A59 was shown to induce pyroptosis, apoptosis and necroptosis of infected cells, especially the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59, is unknown. Here, we demonstrate inhibiting ferroptosis suppresses MHV-A59 infection. MHV-A59 infection upregulates the expression of Acsl1, a novel ferroptosis inducer. MHV-A59 upregulates Acsl1 expression depending on the NF-kB activation, which is TLR4-independent. Ferroptosis inhibitor inhibits viral propagation, inflammatory cytokines release and MHV-A59 infection induced cell syncytia formation. ACSL1 inhibitor Triacsin C suppresses MHV-A59 infection induced syncytia formation and viral propagation. In vivo administration of liproxstatin-1 ameliorates lung inflammation and tissue injuries caused by MHV-A59 infection. Collectively, these results indicate that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serves as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


Author(s):  
Ben Ma ◽  
Patricia M. Gundy ◽  
Charles P. Gerba ◽  
Mark D. Sobsey ◽  
Karl G. Linden

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmissions during the on-going COVID-19 global pandemic and in the future. Ultraviolet (UV) devices emitting UVC irradiation (200-280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level (BSL) 3 laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths (222 nm to 282 nm) from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL-2) during UV disinfection tests. This study provides fundamental information for UVC action on SARS-CoV-2 and guidance for achieving reliable disinfection performance of UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, transportation and healthcare settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the on-going COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222nm provided the best disinfection performance. Interestingly, 222 nm irradiation has been found to be safe for human exposure up to thresholds that are beyond effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface transmissions.


2021 ◽  
Author(s):  
Xin Li ◽  
Liang Wang ◽  
Peipei Liu ◽  
Hongying Li ◽  
Shuting Huo ◽  
...  

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reignited global interest in animal coronaviruses and their potential for human transmission. While bats are thought to be the wildlife reservoir of SARS-CoV and SARS-CoV-2, the widespread human coronavirus OC43 is thought to have originated in rodents. We sampled 297 rodents and shrews representing eight species in three municipalities of southern China. We report coronavirus prevalence of 23.3% and 0.7% in Guangzhou and Guilin, respectively, with samples from urban areas having significantly higher coronavirus prevalence than those from rural areas. We obtained three coronavirus genome sequences from Rattus norvegicus , including a Betacoronavirus RCoV-GCCDC3, an Alphacoronavirus RCoV-GCCDC5 and a novel Betacoronavirus RCoV-GCCDC4. Recombination analysis suggests that there was a potential recombinant event involving RCoV-GCCDC4, Murine hepatitis virus and Longquan Rl rat coronavirus. Furthermore, we uncovered a polybasic cleavage site RARR in the spike (S) protein of RCoV-GCCDC4, which is dominant in RCoV. These findings provide further information on the potential for inter-species transmission of coronaviruses and demonstrate the value of a One Health approach to virus discovery. Importance Surveillance of viruses among rodents within rural and urban areas of South China identified three rodent coronaviruses RCoV-GCCDC3, 4 and 5, one of which was identified as a novel potentially recombinant coronavirus with a polybasic cleavage site in the spike (S) protein. Through reverse transcription PCR screening of coronaviruses, we found that coronavirus prevalence in urban areas is much higher than that in rural areas. Subsequently, we obtained three coronavirus genome sequences by deep sequencing. After different method-based analyses, we found that RCoV-GCCDC4 was a novel potentially recombinant coronavirus with a polybasic cleavage site in S protein, dominant in RCoV. This newly identified coronavirus RCoV-GCCDC4 with its potentially recombinant genome and polybasic cleavage site provides a new insight into the evolution of coronaviruses. Furthermore, our results provide further information on the potential for inter-species transmission of coronaviruses and demonstrate the necessity of a One Health approach for zoonotic disease surveillance.


2021 ◽  
Vol 8 (9) ◽  
pp. 785-791 ◽  
Author(s):  
Franciscus Chandra ◽  
Wei Lin Lee ◽  
Federica Armas ◽  
Mats Leifels ◽  
Xiaoqiong Gu ◽  
...  

2021 ◽  
Author(s):  
Hongchen Shen ◽  
Zhe Zhou ◽  
Haihuan Wang ◽  
Mengyang Zhang ◽  
Minghao Han ◽  
...  

To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (~ 200 nm) and a small pore size (~ 1.5 μm), the optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for the membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 98.9% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and no efficiency reduction for filtering MHV-A59 aerosols was observed after the membranes being exposed to both indoor light and sunlight for days. Nevertheless, sunlight exposure photobleached the membranes, reduced singlet oxygen production, and compromised the performance of disinfecting MHV-A59 in droplets. In contrast, the membranes after simulated indoor light exposure maintained their excellent disinfection performance. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.


Sign in / Sign up

Export Citation Format

Share Document