Ice-core based assessment of nitrogen deposition in the central Tibetan Plateau over the last millennium

Author(s):  
Xiang Zou ◽  
Shugui Hou ◽  
Shuangye Wu ◽  
Hongxi Pang ◽  
Ke Liu ◽  
...  
2010 ◽  
Vol 55 (12) ◽  
pp. 1169-1177 ◽  
Author(s):  
Bao Yang ◽  
LingYu Tang ◽  
ChunHai Li ◽  
YaJun Shao ◽  
ShiCheng Tao ◽  
...  

2008 ◽  
Vol 4 (3) ◽  
pp. 175-180 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from the northern Tibetan Plateau has constrained our understanding of precipitation variations in this region. We drilled an ice core on the Puruogangri Ice Field in the central Tibetan Plateau in 2000 to reveal the precipitation variations. The well dated part of the core extends back to AD 1600, allowing us to construct a 400-year annual accumulation record. This record shows that the central Tibetan plateau experienced a drier period with an average annual precipitation of ~300 mm in the 19th century, compared to ~450 mm in the wetter periods during 1700–1780 and the 20th century. This pattern agrees with precipitation reconstructions from the Dunde and Guliya ice cores on the northern Plateau but differs from that found in the Dasuopu ice cores from the southern Plateau The north-south contrasts in precipitation reconstruction reveals difference in moisture origin between the south Tibetan Plateau dominated by the Asian monsoon and the north Tibetan Plateau dominated by the continental recycling and the westerlies.


2010 ◽  
Vol 44 (25) ◽  
pp. 2980-2989 ◽  
Author(s):  
Shichang Kang ◽  
Yulan Zhang ◽  
Yongjun Zhang ◽  
Bjorn Grigholm ◽  
Susan Kaspari ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 219-227 ◽  
Author(s):  
D. R. Joswiak ◽  
T. Yao ◽  
G. Wu ◽  
B. Xu ◽  
W. Zheng

Abstract. A 33 m ice core was retrieved from the Tanggula Mts, central Tibetan Plateau at 5743 m a.s.l. in August 2005. Annual average δ18O values were determined for the upper 17 m depth (14.6 m w.eq.), representing the time series since the mid-1930s. Data are compared to previous results of an ice core from Mt. Geladaindong, 100 km to the northwest, for the period 1935–2003. During the time 1935–1960, δ18O values differed by 2–3‰ between the two ice cores, with generally lower ratios preserved in the Tanggula 2005 core. Differences in interannual variability and overall average ratios between the two study locations highlight the spatially variable climate controls on ice core isotope ratios within the boundary of monsoon- and westerly-impacted regions of the central Tibetan Plateau. Average annual net accumulation was 261 mm w.eq. for the period 1935–2004. The overall average δ18O value was −13.2‰ and exhibited a statistically significant increase from the 1935–1969 average (−13.7‰) to the 1970–2004 average (−12.6‰). Despite the observed increase in isotope ratios, isotopic temperature dependence was not evident, based on comparison with long-term data from meteorological stations to the north and southwest of the study location. Lack of correlation between average δ18O values and temperature is likely due to monsoon influence, which results in relatively greater isotopic depletion of moisture during the warm season. Evidence of monsoon impacts on precipitation in the central Tibetan Plateau has been previously documented, and statistically significant negative correlation (r=−0.37, p<0.01) between the annual average ice core δ18O values and North India monsoon rainfall was observed for the period 1935–2004. Although the δ18O data agree well with the monsoon rainfall amount, no significant correlation was observed between the core accumulation and the monsoon rainfall amount. Previous model and observational results suggest monsoon impact on δ18O in precipitation may extend beyond the immediate extent of heavy monsoon rainfall, reaching the central Tibetan Plateau. These results provide evidence that the δ18O variability at this study location may be sensitive to southern monsoon intensity.


2008 ◽  
Vol 4 (1) ◽  
pp. 233-248 ◽  
Author(s):  
T. Yao ◽  
K. Duan ◽  
B. Xu ◽  
N. Wang ◽  
X. Guo ◽  
...  

Abstract. Lack of reliable long-term precipitation record from northern Tibetan Plateau has constrained the understanding of precipitation variation in this region. An ice core drilled from the Puruogangri Ice Field on central Tibetan Plateau in the year 2000 helped reveal the precipitation variations since AD 1600. Analysis of the annual accumulation data presented precipitation changes from AD 1600, indicative of wet and dry periods in the past 400 year in the central Tibetan Plateau. Accordingly, the 18th and 20th centuries experienced high precipitation period, whilst the 19th century experienced low precipitation period. Such a feature was consistent with precipitation recorded in ice cores from Dunde and Guliya Glaciers, northern Tibetan Plateau. Besides, the results also pointed to consistency in precipitation-temperature correlation on the northern Tibetan Plateau, in a way that temperature and precipitation were positively correlated. But this feature was contrary to the relationship revealed from Dasuopu ice cores, southern Tibetan Plateau, where temperature and precipitation were negatively correlated. The north-south contrast in precipitation amount and its relationship with temperature may shed light on the reconstruction of Asian monsoon since AD 1600.


2009 ◽  
Vol 5 (4) ◽  
pp. 1929-1949
Author(s):  
D. R. Joswiak ◽  
T. Yao ◽  
G. Wu ◽  
B. Xu ◽  
W. Zheng

Abstract. A 33 m ice core was retrieved from the Tanggula Mtns, central Tibetan Plateau at 5743 m a.s.l. in August 2005. Annual average δ18O ratios were determined for the upper 17 m depth, representing the time series since the mid-1930's based on multi-parameter dating techniques. Data are compared to previous results (Kang et al., 2007) of an ice core from Mt. Geladaindong, 100 km to the northwest, for the period 1935–2003. During the time 1935–1960, δ18O ratios differed by 2–3‰ between the two ice cores, with generally lower ratios preserved in the Tanggula 2005 core. Differences in interannual variability and overall average ratios between the two study locations highlight the spatially variable climatic signals of ice core isotope ratios within the boundary of monsoon- and westerly-impacted regions of the central Tibetan Plateau. Average annual net accumulation was 261 mm w.eq. yr−1 for the period 1935–2004. Overall average δ18O ratio was −13.2‰ and exhibited a statistically significant increase from the 1935–1969 average (−413.7‰) to the 1970–2004 average (−12.6‰). Despite the observed increase in isotope ratios, temperature dependence was not found based on comparison with long-term data from meteorological stations to the north and southwest of the study location. Lack of temperature dependence is likely due monsoon influence, which results in relatively more depleted moisture arriving during the warm season. Evidence of monsoon impacts on precipitation in the central Tibetan Plateau has been previously documented, and statistically significant negative correlation (r=-0.37, p<0.01) between the annual average ice core δ18O ratio and N. India monsoon rainfall was observed for the period 1935–2004.


Sign in / Sign up

Export Citation Format

Share Document