Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review

Author(s):  
Wilgince Apollon ◽  
Iryna Rusyn ◽  
Nancy González-Gamboa ◽  
Tatiana Kuleshova ◽  
Alejandro Isabel Luna-Maldonado ◽  
...  
2021 ◽  
pp. 117795
Author(s):  
Shahjalal Khandaker ◽  
Sudipto Das ◽  
Md. Tofazzal Hossain ◽  
Aminul Islam ◽  
Mohammad Raza Miah ◽  
...  

2017 ◽  
Vol 69 ◽  
pp. 620-641 ◽  
Author(s):  
Adewale Giwa ◽  
Adetunji Alabi ◽  
Ahmed Yusuf ◽  
Tuza Olukan

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 950 ◽  
Author(s):  
Farah Ramadhani ◽  
Mohd Azlan Hussain ◽  
Hazlie Mokhlis

The need for energy is increasing from year to year and has to be fulfilled by developing innovations in energy generation systems. Cogeneration is one of the matured technologies in energy generation, which has been implemented since the last decade. Cogeneration is defined as energy generation unit that simultaneously produced electricity and heat from a single primary fuel source. Currently, the implementation of this system has been spread over the world for stationary and mobile power generation in residential, industrial and transportation uses. On the other hand, fuel cells as an emerging energy conversion device are potential prime movers for this cogeneration system due to its high heat production and flexibility in its fuel usage. Even though the fuel cell-based cogeneration system has been popularly implemented in research and commercialization sectors, the review regarding this technology is still limited. Focusing on the optimal design of the fuel cell-based cogeneration system, this study attempts to provide a comprehensive review, guideline and future prospects of this technology. With an up-to-date literature list, this review study becomes an important source for researchers who are interested in developing this system for future implementation.


Author(s):  
Hafeez Muhammad Yakasai ◽  
Mohd Fadhil Rahman ◽  
Motharasan Manogaran ◽  
Nur Adeela Yasid ◽  
Mohd Arif Syed ◽  
...  

Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important—it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.


2021 ◽  
Vol 11 (24) ◽  
pp. 11598
Author(s):  
Benjamin Commault ◽  
Tatiana Duigou ◽  
Victor Maneval ◽  
Julien Gaume ◽  
Fabien Chabuel ◽  
...  

On-board photovoltaic (PV) energy generation is starting to be deployed in a variety of vehicles while still discussing its benefits. Integration requirements vary greatly for the different vehicles. Numerous types of PV cells and modules technologies are ready or under development to meet the challenges of this demanding sector. A comprehensive review of fast-changing vehicle-integrated photovoltaic (VIPV) products and lightweight PV cell and module technologies adapted for integration into electric vehicles (EVs) is presented in this paper. The number of VIPV projects and/or products is on a steady rise, especially car-based PV integration. Our analysis differentiates projects according to their development stage and technical solutions. The advantages and drawbacks of various PV cell and module technologies are discussed, in addition to recommendations for wide-scale deployment of the technologies.


Sign in / Sign up

Export Citation Format

Share Document