Transformation of minerals and mobility of heavy metals during oxidative weathering of seafloor massive sulfide and their environmental significance

Author(s):  
Siyi Hu ◽  
Chunhui Tao ◽  
Shili Liao ◽  
Chuanwei Zhu ◽  
Zhongrong Qiu
Author(s):  
Tetsuo Yamazaki ◽  
Yosuke Takeda ◽  
Rei Arai ◽  
Naoki Nakatani

Because of the higher Au, Ag, and Cu contents, seafloor massive sulfides (SMS) have received much attention as future commercial mining targets by private companies and nations. One of them, Solwara 1 Project in Papua New Guinea (PNG), is scheduled to start the commercial mining operation from 2018. Because the mining site is inter-island area and almost no cost is necessary for the waste disposal in PNG, the economy of the mining is expected very well. In contrast with this, because all the SMS distribution sites in Japan locate outer ocean areas and the waste disposal cost on land in Japan is very expensive, the economy of SMS mining in Japan is quite negative. In order to overcome the problems, a self-standing riser with flexible link to the sea surface platform and a primary ore separation on the seafloor prior to the ore lift-up are proposed. The improved SMS mining concept named Japan’s model is examined.


2020 ◽  
Author(s):  
John Jamieson ◽  
Dennis Sanchez Mora ◽  
Ben Peterkin ◽  
Thibaut Barreyre ◽  
Javier Escartin ◽  
...  

2020 ◽  
Author(s):  
Melissa. O Anderson ◽  
Mark Hannington ◽  
Timothy McConachy ◽  
John Jamieson ◽  
Thor Hansteen ◽  
...  

2019 ◽  
Vol 114 (5) ◽  
pp. 857-896 ◽  
Author(s):  
Melissa O. Anderson ◽  
Mark D. Hannington ◽  
Timothy F. McConachy ◽  
John W. Jamieson ◽  
Maria Anders ◽  
...  

Abstract Tinakula is the first seafloor massive sulfide deposit described in the Jean Charcot troughs and is the first such deposit described in the Solomon Islands—on land or the seabed. The deposit is hosted by mafic (basaltic-andesitic) volcaniclastic rocks within a series of cinder cones along a single eruptive fissure. Extensive mapping and sampling by remotely operated vehicle, together with shallow drilling, provide insights into deposit geology and especially hydrothermal processes operating in the shallow subsurface. On the seafloor, mostly inactive chimneys and mounds cover an area of ~77,000 m2 and are partially buried by volcaniclastic sand. Mineralization is characterized by abundant barite- and sulfide-rich chimneys that formed by low-temperature (<250°C) venting over ~5,600 years. Barite-rich samples have high SiO2, Pb, and Hg contents; the sulfide chimneys are dominated by low-Fe sphalerite and are high in Cd, Ge, Sb, and Ag. Few high-temperature chimneys, including zoned chalcopyrite-sphalerite samples and rare massive chalcopyrite, are rich in As, Mo, In, and Au (up to 9.26 ppm), locally as visible gold. Below the seafloor, the mineralization includes buried intervals of sulfide-rich talus with disseminated sulfides in volcaniclastic rocks consisting mainly of lapillistone with minor tuffaceous beds and autobreccias. The volcaniclastic rocks are intensely altered and variably cemented by anhydrite with crosscutting sulfate (± minor sulfide) veins. Fluid inclusions in anhydrite and sphalerite from the footwall (to 19.3 m below seafloor; m b.s.f.) have trapping temperatures of up to 298°C with salinities close to, but slightly higher than, that of seawater (2.8–4.5 wt % NaCl equiv). These temperatures are 10° to 20°C lower than the minimum temperature of boiling at this depth (1,070–1,204 m below sea level; m b.s.l.), suggesting that the highest-temperature fluids boiled below the seafloor. The alteration is distributed in broadly conformable zones, expressed in order of increasing depth and temperature as (1) montmorillonite/nontronite, (2) nontronite + corrensite, (3) illite/smectite + pyrite, (4) illite/smectite + chamosite, and (5) chamosite + corrensite. Zones of argillic alteration are distinguished from chloritic alteration by large positive mass changes in K2O (enriched in illite/smectite), MgO (enriched in chamosite and corrensite), and Fe2O3 (enriched in pyrite associated with illite/smectite alteration). The δ18O and δD values of clay minerals confirm increasing temperature with depth, from 124° to 256°C, and interaction with seawater-dominated hydrothermal fluids at high water/rock ratios. Leaching of the volcanic host rocks and thermochemical reduction of seawater sulfate are the primary sources of sulfur, with δ34S values of sulfides, from –0.8 to 3.4‰, and those of sulfate minerals close to seawater sulfate, from 19.3 to 22.5‰. The mineralization and alteration at Tinakula are typical of a class of ancient massive sulfide deposits hosted mainly by permeable volcaniclastic rocks with broad, semiconformable alteration zones. Processes by which these deposits form have never been documented in modern seafloor massive sulfide systems, because they mostly develop below the seafloor. Our study shows how hydrothermal fluids can become focused within permeable rocks by progressive, low-temperature fluid circulation, leading to a large area (>150,000 m2) of alteration with reduced permeability close to the seafloor. In our model, overpressuring and fracturing of the sulfate- and clay-cemented volcaniclastic rocks produced the pathways for higher-temperature fluids to reach the seafloor, present now as sulfate-sulfide veins within the footwall. In the geologic record, the sulfate (anhydrite) is not preserved, leaving a broad zone of intense alteration with disseminated and stringer sulfides typical of this class of deposits.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 622
Author(s):  
Valeriy Maslennikov ◽  
Georgy Cherkashov ◽  
Dmitry Artemyev ◽  
Anna Firstova ◽  
Ross Large ◽  
...  

The massive sulfide ores of the Pobeda hydrothermal fields are grouped into five main mineral microfacies: (1) isocubanite-pyrite, (2) pyrite-wurtzite-isocubanite, (3) pyrite with minor isocubanite and wurtzite-sphalerite microinclusions, (4) pyrite-rich with framboidal pyrite, and (5) marcasite-pyrite. This sequence reflects the transition from feeder zone facies to seafloor diffuser facies. Spongy, framboidal, and fine-grained pyrite varieties replaced pyrrhotite, greigite, and mackinawite “precursors”. The later coarse and fine banding oscillatory-zoned pyrite and marcasite crystals are overgrown or replaced by unzoned subhedral and euhedral pyrite. In the microfacies range, the amount of isocubanite, wurtzite, unzoned euhedral pyrite decreases versus an increasing portion of framboidal, fine-grained, and spongy pyrite and also marcasite and its colloform and radial varieties. The trace element characteristics of massive sulfides of Pobeda seafloor massive sulfide (SMS) deposit are subdivided into four associations: (1) high temperature—Cu, Se, Te, Bi, Co, and Ni; (2) mid temperature—Zn, As, Sb, and Sn; (3) low temperature—Pb, Sb, Ag, Bi, Au, Tl, and Mn; and (4) seawater—U, V, Mo, and Ni. The high contents of Cu, Co, Se, Bi, Te, and values of Co/Ni ratios decrease in the range from unzoned euhedral pyrite to oscillatory-zoned and framboidal pyrite, as well as to colloform and crystalline marcasite. The trend of Co/Ni values indicates a change from hydrothermal to hydrothermal-diagenetic crystallization of the pyrite. The concentrations of Zn, As, Sb, Pb, Ag, and Tl, as commonly observed in pyrite formed from mid- and low-temperature fluids, decline with increasing crystal size of pyrite and marcasite. Coarse oscillatory-zoned pyrite crystals contain elevated Mn compared to unzoned euhedral varieties. Framboidal pyrite hosts maximum concentrations of Mo, U, and V probably derived from ocean water mixed with hydrothermal fluids. In the Pobeda SMS deposit, the position of microfacies changes from the black smoker feeder zone at the base of the ore body, to seafloor marcasite-pyrite from diffuser fragments in sulfide breccias. We suggest that the temperatures of mineralization decreased in the same direction and determined the zonal character of deposit.


Sign in / Sign up

Export Citation Format

Share Document