feeder zone
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 38 (3) ◽  
pp. 193-209
Author(s):  
Joseph Madondo ◽  
Carles Canet ◽  
Fernando Núñez-Useche ◽  
Eduardo González-Partida

Large outcrops of jasperoids occur in the ‘Montaña de Manganeso’ mining district in north-central Mexico. They range from massive manganiferous jasperoids to highly brecciated, hematitic jasperoid. The jasperoids of ‘Montaña de Manganeso’ occur mainly as replacements of limestone, sandstone and shale, commonly nearby high-angle fault systems. The mineralogy of the jasperoids consist of quartz and its polymorphs (chalcedony, tridymite and cristobalite), Fe-Mn oxyhydroxides, calcite and minor barite. Many outcrops show evidence of several periods of brecciation and silicification. The geochemical signature of the jasperoids suggests that silicification was product of hydrothermal activity. The jasperoids display enrichment in elements of hydrothermal provenance such as Ba, Sr, As, Cr, Mo, Sb, Ni, Zn and Cu, whereas are strongly depleted in the elements indicative of clastic sources such as Ti, K, Th and Zr. Element ratios such as (Fe+Mn)/Ti, Al/(Al+Fe+Mn), Fe/Mn and U /Th, along with the Al-Fe-Mn and Fe-Mn-(Ni+Co+Cu)×10 ternary diagrams confirm a hydrothermal origin. Low ∑REE, an enrichment of LREE over HREE, negative Ce anomalies and positive Y anomalies (YPASS/HoPAAS) also support the hydrothermal processes. The geological evidence, in the form of a feeder zone and extensive hydrothermal alteration, show that the silica forming the rocks originated from ascending hot fluids.


2021 ◽  
Vol 40 (2) ◽  
pp. 129-138
Author(s):  
David Stannard ◽  
Jayson Meyers ◽  
Angelo Scopel

Abra is a high-grade sedimentary-hosted Pb deposit located in the Paleoproterozoic Edmund Basin in Western Australia. Mineralization is blind, with the top of the deposit occurring 250 m beneath the land surface. The deposit consists of a stratiform apron of Pb-Ag-Ba mineralization in laminated iron-oxide- and barite-altered dolomite and siltstone, which overlies a feeder zone of chlorite-altered, brecciated, and veined carbonatic siltstone that contains Pb-Ag mineralization in the core that transitions to Pb-Cu and Cu-Au at depth. Abra is characterized by discrete geophysical anomaly responses in magnetic, gravity, time-domain electromagnetic (TDEM), and induced polarization survey data. A +450 nT magnetic anomaly is caused by magnetite in the lower stratiform zone. Dense galena, barite, dolomite, and iron-oxide mineralization in the apron and galena in the feeder zone is surrounded by lower-density sedimentary host rocks, which results in a +1 mGal gravity anomaly. Airborne, ground, and downhole TDEM surveying resolved known mineralization as weak electromagnetic conductor responses, and petrophysical testing on core samples shows that this is caused by galena. Pole-dipole-induced polarization surveying resolved a +20 ms chargeability anomaly on the southern flank of the deposit. This chargeable anomaly response is related to disseminated galena, pyrite, chalcopyrite, and alteration. Joint audiomagnetotelluric-magnetotelluric 2D inverted data sections resolved Abra as a broad weakly conductive anomaly. Weak conductor responses associated with Abra were also resolved in 2D and 3D inversion modeling of airborne Z-axis tipper electromagnetic data. 2D seismic reflection surveying resolved Abra as strong flat-lying seismic reflectors, which are bounded and offset by faults and surrounded by a seismically bland zone. The seismic reflections are related to significant density contrasts between high-density stratiform mineralization that is in contact with low-density sedimentary host rocks, as the mineralization and host rocks have similar seismic velocities. Passive seismic horizontal to vertical spectral ratio surveying resolved the top of the deposit as a subtle layer sitting below a flat impedance contrast horizon that is interpreted as weathered siltstone on top of diagenetically cemented siltstone.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 622
Author(s):  
Valeriy Maslennikov ◽  
Georgy Cherkashov ◽  
Dmitry Artemyev ◽  
Anna Firstova ◽  
Ross Large ◽  
...  

The massive sulfide ores of the Pobeda hydrothermal fields are grouped into five main mineral microfacies: (1) isocubanite-pyrite, (2) pyrite-wurtzite-isocubanite, (3) pyrite with minor isocubanite and wurtzite-sphalerite microinclusions, (4) pyrite-rich with framboidal pyrite, and (5) marcasite-pyrite. This sequence reflects the transition from feeder zone facies to seafloor diffuser facies. Spongy, framboidal, and fine-grained pyrite varieties replaced pyrrhotite, greigite, and mackinawite “precursors”. The later coarse and fine banding oscillatory-zoned pyrite and marcasite crystals are overgrown or replaced by unzoned subhedral and euhedral pyrite. In the microfacies range, the amount of isocubanite, wurtzite, unzoned euhedral pyrite decreases versus an increasing portion of framboidal, fine-grained, and spongy pyrite and also marcasite and its colloform and radial varieties. The trace element characteristics of massive sulfides of Pobeda seafloor massive sulfide (SMS) deposit are subdivided into four associations: (1) high temperature—Cu, Se, Te, Bi, Co, and Ni; (2) mid temperature—Zn, As, Sb, and Sn; (3) low temperature—Pb, Sb, Ag, Bi, Au, Tl, and Mn; and (4) seawater—U, V, Mo, and Ni. The high contents of Cu, Co, Se, Bi, Te, and values of Co/Ni ratios decrease in the range from unzoned euhedral pyrite to oscillatory-zoned and framboidal pyrite, as well as to colloform and crystalline marcasite. The trend of Co/Ni values indicates a change from hydrothermal to hydrothermal-diagenetic crystallization of the pyrite. The concentrations of Zn, As, Sb, Pb, Ag, and Tl, as commonly observed in pyrite formed from mid- and low-temperature fluids, decline with increasing crystal size of pyrite and marcasite. Coarse oscillatory-zoned pyrite crystals contain elevated Mn compared to unzoned euhedral varieties. Framboidal pyrite hosts maximum concentrations of Mo, U, and V probably derived from ocean water mixed with hydrothermal fluids. In the Pobeda SMS deposit, the position of microfacies changes from the black smoker feeder zone at the base of the ore body, to seafloor marcasite-pyrite from diffuser fragments in sulfide breccias. We suggest that the temperatures of mineralization decreased in the same direction and determined the zonal character of deposit.


2018 ◽  
Vol 180 ◽  
pp. 01003
Author(s):  
Mykola Kostin

For the first time, the “field” approach for explaining the processes of transmission and generation of electric power losses in devices of electric transport systems is described and theoretically substantiated on the basis of the theory of electromagnetic field. The results of the solution of the system of electromagnetic field equations show that it is energetically appropriate to design low-floor types of electric rolling stock. A qualitative view of electric power flows arriving through the air of the feeder zone from the traction substation and entering to the electric rolling stock through the roof and the front part of its body is presented. It is established that the main flow of energy enters through the roof porcelain insulator. At the same time, the electromagnetic waves partly penetrate into the metal surfaces of roof and frontal part of the body, and partially they are reflected from them creating losses of active power. The results of calculations of these losses, power factor and reactive power factor of the electric locomotive roof are shown. The relation between the standing waves, formed in the feeder zone, and the reactive power consumed by the electric rolling stock is established.


2008 ◽  
Vol 145 (3) ◽  
pp. 345-359 ◽  
Author(s):  
I. ROMEO ◽  
R. TEJERO ◽  
R. CAPOTE ◽  
R. LUNAR

AbstractThe Aguablanca stock is a Variscan mafic pluton located in the Ossa-Morena zone, southern Iberian Massif, hosting an unusual Ni–Cu–PGE mineralization associated with magmatic breccia pipes which intruded its northern part. The emplacement of the Aguablanca stock and the mineralized breccia pipes are related to the activity of the Cherneca ductile shear zone, a Variscan sinistral shear zone that favoured magma ascent through the upper crust. A detailed gravity study has been carried out in order to investigate the 3D geometry of the Aguablanca intrusion and to get insights about the emplacement mechanism and tectonic controls of the mineralization. The three-dimensional gravity modelling shows that the stock has an inverted drop geometry with a feeder zone in contact with the Cherneca ductile shear zone. The inferred orientation of the feeder zone suggests that the emplacement probably took place along an open tensional crack formed within the strain field of the adjacent Cherneca ductile shear zone. The modelling of the breccia pipes hosting the Ni–Cu–PGE ore shows that they are included inside the feeder zone, thus their emplacement is probably controlled by successive opening events of this tensional crack.


Sign in / Sign up

Export Citation Format

Share Document