Activated carbons from co-carbonization of waste truck tires and spent tea leaves

2021 ◽  
Vol 21 ◽  
pp. 100410 ◽  
Author(s):  
Cansu Guclu ◽  
Koray Alper ◽  
Murat Erdem ◽  
Kubilay Tekin ◽  
Selhan Karagoz
Author(s):  
Syie Luing Wong ◽  
Mohamed Hizam Mohamed Noor ◽  
Norzita Ngadi ◽  
Ibrahim Mohammed Inuwa ◽  
Ramli Mat ◽  
...  

Author(s):  
Kim G ◽  
García H ◽  
Japhe T ◽  
Iyengar R ◽  
Llanos BP ◽  
...  

2018 ◽  
Vol 8 (5) ◽  
Author(s):  
Md. Nur-E-Alam ◽  
Md. Abu Sayid Mia ◽  
Farid Ahmad ◽  
Md. Mafizur Rahman

2018 ◽  
Vol 1 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Jesie Silva ◽  
Lizebel Morante ◽  
Tesfamichael Demeke ◽  
Jacqueline Baah-Twum ◽  
Abel Navarro

The prevalence of antibiotics in water creates microbial resistance and has a negative impact on the ecosystem. Biomaterials such as spent tea leaves are rich in functional groups and are suitable for chemical modification for diverse applications. This research proposes the use of spent tea leaves of chamomile (CM), green tea (GT), and peppermint (PM) as structural scaffolds for the incorporation of carboxyl, sulfonyl, and thiol groups to improve the adsorption of Penicillin G (Pe). Adsorbents characterization reported a higher number of acidic functional groups, mainly in thiolated products. Scanning electron microscopy (SEM) analysis showed changes on the surfaces of the adsorbents due to reaction conditions, with a stronger effect on thiolated and sulfonated adsorbents. Elemental analysis by Energy dispersive X-ray spectrophotometry (EDS) corroborated the chemical modification by the presence of sulfur atoms and the increase in oxygen/carbon ratios. Batch experiments at different pH shows a strong pH-dependence with a high adsorption at pH 8 for all the adsorbents. The adsorption follows the trend CMs > GTs > PMs. Thiolation and sulfonation reported higher adsorptions, which is most likely due to the sulfur bridge formation, reaching adsorption percentages of 25%. These results create a new mindset in the use of spent tea leaves and their chemical modifications for the bioremediation of antibiotics.


2021 ◽  
pp. 126409
Author(s):  
Taru Negi ◽  
Yogesh Kumar ◽  
Ranjna Sirohi ◽  
Shikhangi Singh ◽  
Ayon Tarafdar ◽  
...  

2013 ◽  
Vol 803 ◽  
pp. 26-29 ◽  
Author(s):  
Antonio Zuorro ◽  
Maria Laura Santarelli ◽  
Roberto Lavecchia

Spent tea leaves (STL), a valueless waste produced during the manufacturing of tea beverages, were investigated as a potential low-cost adsorbent for the removal of the azo dyes Reactive Blue 19 (RB19), Reactive Red 120 (RR 120), Reactive Violet 5 (RV5) and Reactive Green 19 (R19) from wastewater. Untreated STL showed very low removal efficiency (< 7%), while a significant increase in dye adsorption was observed when they were thermally activated. Heating STL to 300 °C for 1 hour resulted in removal efficiencies ranging from 68.5 to 98.4%. Characterization of the waste by FTIR and TG/DTA indicated that major structural and/or chemical changes of the cellulose and hemicellulose components of STL occurred during heating.


2014 ◽  
Vol 660 ◽  
pp. 541-546 ◽  
Author(s):  
Qumrul Ahsan ◽  
Chia Pooi Ching ◽  
Mohd Yuhazri bin Yaakob

Spent tea leaves (STL) from tea producing factories can be considered as new resources for sound absorbing polyurethane (PU) matrix composite materials because STL are rich in polyphenols (tannins) which cause high durability, high resistance to fungal and termites, and high resistance to fire. The research aims to study the physical characteristics of STL and the effect of dispersion morphology of STL on the sound absorption properties of polyurethane foam composites by varying filler loading. Three grades of STL fibers either as received or granulated are used in this study, namely BM-FAE and SWBHE derived from the stalk while FIBER-FAE derived from the leaves of the tea plant. The PU/STL composites are fabricated through open molding method with a fiber loading of 16 wt. %. The fabricated composites are then subjected to physical and sound absorption testing as well as microscopic observations to analyze the distribution of filler in composite. The study shows that as-received FIBER-FAE spent tea leaves provide the best sound absorption coefficient and for composites using granulated fibers from any grade have lower sound absorption coefficient. These results show that a novel kind of sound absorption materials with the recycling of waste materials can be obtained for the solution of noise and environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document