tannery wastewater
Recently Published Documents


TOTAL DOCUMENTS

566
(FIVE YEARS 191)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 6 ◽  
pp. 100357
Author(s):  
Md. Minhaz Uddin ◽  
Md. Jawad Hasan ◽  
Yead Mahmud ◽  
Nizam Uddin ◽  
Khandaker Tanzim Rahman ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262140
Author(s):  
Ihsan Elahi Zaheer ◽  
Shafaqat Ali ◽  
Muhammad Hamzah Saleem ◽  
Hafiza Sana Yousaf ◽  
Afifa Malik ◽  
...  

Environmental contamination of chromium (Cr) has gained substantial consideration worldwide because of its high levels in the water and soil. A pot experiment using oil seed crop (rapeseed (Brassica napus L.)) grown under different levels of tannery wastewater (0, 33, 66 and 100%) in the soil using the foliar application of zinc (Zn) and iron (Fe)–lysine (lys) has been conducted. Results revealed that a considerable decline in the plant growth and biomass elevates with the addition of concentrations of tannery wastewater. Maximum decline in plant height, number of leaves, root length, fresh and dry biomass of root and leaves were recorded at the maximum level of tannery wastewater application (100%) compared to the plants grown without the addition of tannery wastewater (0%) in the soil. Similarly, contents of carotenoid and chlorophyll, gas exchange parameters and activities of various antioxidants (superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) were also reduced significantly (P < 0.05) with the increasing concentration of tannery wastewater (33, 66 and 100%) in the soil. In addition, a combined application of Zn and Fe-lys reduced the accumulation and uptake of toxic Cr, while boosting the uptake of essential micronutrients such as Zn and Fe in different tissues of the plants. Results concluded that exogenous application of micronutrients chelated with amino acid successfully mitigate Cr stress in B. napus. Under field conditions, supplementation with these micronutrient-chelated amino acids may be an effective method for alleviating metal stress in other essential seed crops.


Author(s):  
Shohreh Ariaeenejad ◽  
Kaveh Kavousi ◽  
Atefeh Sheykh Abdollahzadeh Mamaghani ◽  
Rezvaneh Ghasemitabesh ◽  
Ghasem Hosseini Salekdeh

Heliyon ◽  
2021 ◽  
pp. e08680
Author(s):  
Miriam Appiah-Brempong ◽  
Helen Michelle Korkor Essandoh ◽  
Nana Yaw Asiedu ◽  
Samuel Kwame Dadzie ◽  
Francis Warings Yao Momade
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6923
Author(s):  
Rahman Ullah ◽  
Waqas Ahmad ◽  
Muhammad Yaseen ◽  
Mansoor Khan ◽  
Mehmood Iqbal Khattak ◽  
...  

Herein, we report the synthesis of magnetic nanoparticle (MNP)-reduced graphene oxide (rGO) and polymethylmethacrylate (PMMA) composite (MNPs/rGO/PMMA) as adsorbent via an in situ fabrication strategy and, in turn, the application for adsorptive removal and recovery of Cr(VI) from tannery wastewater. The composite material was characterized via XRD, FTIR and SEM analyses. Under batch mode experiments, the composite achieved maximum adsorption of the Cr(VI) ion (99.53 ± 1.4%, i.e., 1636.49 mg of Cr(VI)/150 mg of adsorbent) at pH 2, adsorbent dose of 150 mg/10 mL of solution and 30 min of contact time. The adsorption process was endothermic, feasible and spontaneous and followed a pseudo-2nd order kinetic model. The Cr ions were completely desorbed (99.32 ± 2%) from the composite using 30 mL of NaOH solution (2M); hence, the composite exhibited high efficiency for five consecutive cycles without prominent loss in activity. The adsorbent was washed with distilled water and diluted HCl (0.1M), then dried under vacuum at 60 °C for reuse. The XRD analysis confirmed the synthesis and incorporation of magnetic iron oxide at 2θ of 30.38°, 35.5°, 43.22° and 57.36°, respectively, and graphene oxide (GO) at 25.5°. The FTIR analysids revealed that the composite retained the configurations of the individual components, whereas the SEM analysis indicated that the magnetic Fe3O4–NPs (MNPs) dispersed on the surface of the PMMA/rGO sheets. To anticipate the behavior of breakthrough, the Thomas and Yoon–Nelson models were applied to fixed-bed column data, which indicated good agreement with the experimental data. This study evaluates useful reference information for designing a cost-effective and easy-to-use adsorbent for the efficient removal of Cr(VI) from wastewater. Therefore, it can be envisioned as an alternative approach for a variety of unexplored industrial-level operations.


Author(s):  
Faiz Miran ◽  
Muhammad Waseem Mumtaz ◽  
Hamid Mukhtar ◽  
Sadia Akram

The microbial fuel cell (MFC) is emerging as a potential technology for extracting energy from wastes/wastewater while they are treated. The major hindrance in MFC commercialization is lower power generation due to the sluggish transfer of electrons from the biocatalyst (bacteria) to the anode surface and inefficient microbial consortia for treating real complex wastewater. To overcome these concerns, a traditional carbon felt (CF) electrode modification was carried out by iron oxide (Fe3O4) nanoparticles via facile dip-and-dry methods, and mixed sulfate-reducing bacteria (SRBs) were utilized as efficient microbial consortia. In the modified CF electrode with SRBs, a considerable improvement in the bioelectrochemical operation was observed, where the power density (309 ± 13 mW/m2) was 1.86 times higher than bare CF with SRBs (166 ± 11 mW/m2), suggesting better bioelectrochemical performance of an SRB-enriched Fe3O4@CF anode in the MFC. This superior activity can be assigned to the lower charge transfer resistance, higher conductance, and increased number of catalytic sites of the Fe3O4@CF electrode. The SRB-enriched Fe3O4@CF anode also assists in enhancing MFC performance in terms of COD removal (&gt;75%), indicating efficient biodegradability of tannery wastewater and a higher electron transfer rate from SRBs to the conductive anode. These findings demonstrate that a combination of the favorable properties of nanocomposites such as Fe3O4@CF anodes and efficient microbes for treating complex wastes can encourage new directions for renewable energy–related applications.


Sign in / Sign up

Export Citation Format

Share Document