saline waters
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 68)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
R. S. Brito ◽  
M. C. Almeida ◽  
N. Silva ◽  
S. Barreto ◽  
F. Veríssimo

Abstract Urban water drainage systems' primary function is to transport sanitary or stormwater. The intrusion of saline waters has recognized detrimental effects. Especially in coastal areas, saline inflows can compromise performance by increasing the risk of untreated discharges, weakening the structural condition of concrete or metallic components, reducing the effectiveness of wastewater treatment processes and limiting the potential reuse for irrigation. Performance deterioration can be prevented by an early assessment of exposure to saline water, followed by timely actions to control its causes and consequences. The paper describes a procedure for diagnosing undue saline inflows. The procedure is based on the determination of saline inflow's magnitude, acceptance levels, and contribution to the system's performance. Contextual factors and performance indicators, and their reference values, are selected for the assessment. Options to address the problem are proposed, depending on the results. These options can relate to organizational, operational, and structural actions. Application to a case study allowed to validate the method and discuss the results. Here, saline volumes entering the system are quite relevant (almost 30%), posing problems regarding corrosion, treatment plant operation and significant concrete exposure to intermittent saline waters.


2021 ◽  
Vol 308 ◽  
pp. 125020
Author(s):  
Xiaonan Ge ◽  
Brandon Guo ◽  
Dongdong Guo ◽  
Mingjiang Tao ◽  
Guoping Zhang
Keyword(s):  

Author(s):  
Francisco de A. de Oliveira ◽  
Francisco I. G. Paiva ◽  
José F. de Medeiros ◽  
Mikhael R. de S. Melo ◽  
Mychelle K. T. de Oliveira ◽  
...  

ABSTRACT Adequate potassium and calcium nutrition is a strategy to reduce salt stress on tomatoes, as it reduces nutritional imbalance in plants. With the objective of evaluating tomato production using irrigation with saline waters and fertigation with different potassium-calcium proportions, an experiment was carried out in a protected environment in Mossoró, RN, Brazil. The experimental design used was randomized blocks, in a 5 x 4 factorial scheme, with four replicates. The treatments consisted of the combination of four electrical conductivity of nutrient solution (ECns) (1.75; 3.25; 4.75; and 6.25 dS m-1) combined with five ionic proportions (m/m) of potassium and calcium (F1 = 2.43:1; F2 = 2.03:1; F3 = 1.62:1; F4 = 1.30:1 and F5 = 1.08:1). The response variables were: number of fruits, mean fruit weight, fruit production per plant and relative yield. It was possible to identify satisfactory results of production when higher salinity was used. Fertigation with low K+/Ca2+ proportions intensifies the effect of salinity on tomato crop.


Author(s):  
Yu.A. Taran ◽  
◽  
G.V. Ryabinin ◽  
B.G. Pokrovski ◽  
I.N. Nazhalova ◽  
...  

Saline waters (up to 22 g/l) were tapped by deep (to 3000 m) wells at the foot of active volcanoes Avachinsky and Koryaksky, within Avachinsky depression. Temperature of waters was ~ 60°C in the western part and cold in the eastern part, closer to the Pacific coast. In this paper we present the literature and our own data on chemical and isotopic composition of these waters. The waters are of the Na-Cl type with extremely low abundances of sulfate and magnesium, high concentration of calcium and surprisingly high concentration of strontium. The waters contain about 50 ml/l of gas where methane and nitrogen are main components (~ 70 vol% and 30 vol%, respectively) and also presents H2S (~ 30 ml/l) and very low concentrations of CO2 (< 0.5 vol%). The N2/Ar ratio, as a rule, is higher than the air ratio, i.e., the non-atmospheric nitrogen presents. We discuss the possible options of the water-rock interaction, responsible for the chemical composition of waters, and offer a conceptual model of the proposed basin of mineral waters that includes the distribution of deep temperatures, the location of the possible sources of heat mineralized solutions.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 523
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Juan Jiménez-Millán ◽  
Claudia Patricia Quevedo ◽  
Fernando Nieto ◽  
Javier Cuadros ◽  
...  

In this investigation, we showed that high salinity promoted by hydrothermal inputs, reducing conditions of sediments with high content in organic matter, and the occurrence of an appropriate clay mineral precursor provide a suitable framework for low-temperature illitization processes. We studied the sedimentary illitization process that occurs in carbonaceous sediments from a lake with saline waters (Sochagota Lake, Colombia) located at a tropical latitude. Water isotopic composition suggests that high salinity was produced by hydrothermal contribution. Materials accumulated in the Sochagota Lake’s southern entrance are organic matter-poor sediments that contain detrital kaolinite and quartz. On the other hand, materials formed at the central segment and near the lake exit (north portion) are enriched in organic matter and characterized by the crystallization of Fe-sulfides. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectrometry (EDX) data allowed for the identification of illite and illite-dioctahedral vermiculite mixed layers (I-DV), which are absent in the southern sediments. High humidity and temperate climate caused the formation of small-sized metastable intermediates of I-DV particles by the weathering of the source rocks in the Sochagota Lake Basin. These particles were deposited in the low-energy lake environments (middle and north part). The interaction of these sediments enriched in organic matter with the saline waters of the lake enriched in hydrothermal K caused a reducing environment that favored Fe mobilization processes and its incorporation to I-DV mixed layers that acted as mineral precursor for fast low temperature illitization, revealing that in geothermal areas clays in lakes favor a hydrothermal K uptake.


Author(s):  
Pedro Huerta ◽  
Ildefonso Armenteros ◽  
Clemente Recio ◽  
Pedro Carrasco-García ◽  
Carolina Rueda-Gualdrón ◽  
...  
Keyword(s):  
Nw Spain ◽  

Sign in / Sign up

Export Citation Format

Share Document