Strength, damage and fracture behaviors of high-nitrogen austenitic stainless steel processed by high-pressure torsion

2015 ◽  
Vol 96 ◽  
pp. 5-8 ◽  
Author(s):  
F.Y. Dong ◽  
P. Zhang ◽  
J.C. Pang ◽  
Y.B. Ren ◽  
K. Yang ◽  
...  
2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


2010 ◽  
Vol 654-656 ◽  
pp. 334-337 ◽  
Author(s):  
Innocent Shuro ◽  
Minoru Umemoto ◽  
Yoshikazu Todaka ◽  
Seiji Yokoyama

SUS 304 austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation to give a two phase structure of austenite (γ) and martensite (α') by the transformation γα'. The phase transformation was accompanied by an increase in hardness (Hv) from 1.6 GPa in the as annealed form to 5.4 GPa in the deformed state. Subsequent annealing in temperature range 250oC to 450oC resulted in an increase in both α' volume fraction and hardness (6.4 GPa). Annealing at 600oC resulted in a decrease in α' volume fraction hardness.


2013 ◽  
Vol 13 (5) ◽  
pp. 3246-3249 ◽  
Author(s):  
Agnieszka Teresa Krawczynska ◽  
Malgorzata Lewandowska ◽  
Reinhard Pippan ◽  
Krzysztof Jan Kurzydlowski

2016 ◽  
Vol 838-839 ◽  
pp. 398-403 ◽  
Author(s):  
Marina Tikhonova ◽  
Nariman Enikeev ◽  
Ruslan Z. Valiev ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The formation of submicrocrystalline structure during severe plastic deformation and its effect on mechanical properties of an S304H austenitic stainless steel with chemical composition of Fe – 0.1C – 0.12N – 0.1Si – 0.95Mn – 18.4Cr – 7.85Ni – 3.2Cu – 0.5Nb – 0.01P – 0.006S (all in mass%) were studied. The severe plastic deformation was carried out by high pressure torsion (HPT) at two different temperatures, i.e., room temperature or 400°C. HPT at room temperature or 400°C led to the formation of a fully austenitic submicrocrystalline structure. The grain size and strength of the steels with ultrafine-grained structures produced by cold or warm HPT were almost the same. The ultimate tensile strengths were 1950 MPa and 1828 MPa after HPT at room temperature and 400°C, respectively.


Author(s):  
Qi He ◽  
Zhengli Hua ◽  
Jinyang Zheng

Austenitic stainless steel of the 300 series and their welds are widely employed in the production, storage and distribution infrastructures of gaseous and liquid hydrogen. However, hydrogen compatibility of their welds has not been completely understood, especially in high-pressure hydrogen environment. In this study, the influence of 98MPa high pressure gaseous hydrogen on the tensile properties and fracture behaviors of three kinds of S31603 weld joints were investigated, including SMAW, SAW and TIG welds. The tensile data indicated that hydrogen caused the ductility loss of the SAW and TIG weld joints, particularly for the TIG welds. For the SMAW weld joints, hydrogen had little impact on its ductility. Fractographic analysis revealed that hydrogen scarcely induced a change in the fracture mode of the SMAW welds. Different from this, the SAW and TIG welds were found to exhibit an obvious susceptibility to hydrogen embrittlement in this study, particularly for the TIG welds, based on the change of fracture features from dimples to facets, striations and secondary cracks. Additionally, both fracture surfaces of the SMAW and SAW welds contained some inclusions where the secondary cracks were promoted.


2019 ◽  
Vol 243 ◽  
pp. 116-119 ◽  
Author(s):  
Andrew Hoffman ◽  
Haiming Wen ◽  
Rinat Islamgaliev ◽  
Ruslan Valiev

2012 ◽  
Vol 552 ◽  
pp. 194-198 ◽  
Author(s):  
I. Shuro ◽  
H.H. Kuo ◽  
T. Sasaki ◽  
K. Hono ◽  
Y. Todaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document