Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation

2019 ◽  
Vol 162 ◽  
pp. 112-117 ◽  
Author(s):  
Lu Wang ◽  
Chao Fu ◽  
Yidong Wu ◽  
Runguang Li ◽  
Xidong Hui ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shan-Hsiu Chang ◽  
Po-Ting Lin ◽  
Che-Wei Tsai

AbstractOne of the major challenges of near-equiatomic NiTi shape memory alloys is their limitation for high-temperature applications. To overcome this barrier, researchers have tried to enhance the transformation temperatures by addition of alloying elements or even by introducing the concept of high-entropy alloys (HEAs). In this study, the CuNiHfTiZr HEAs were developed for high-temperature shape memory effect. Based on their solubility and electron configurations, the alloying elements are divided into two groups, (CuNi)50 and (HfTiZr)50. The content of Cu in (CuNi)50 is modulated to investigate the influences of Cu on martensitic transformation of the HEAs by studying structural evolution and transformation behavior. The results of x-ray diffraction and thermal expansion tests revealed that Cu15Ni35Hf16.67Ti16.67Zr16.67 possesses high transformation temperature, narrow hysteresis temperature loops, and good dimensional stability within this HEA system.


2019 ◽  
Author(s):  
Jack Pedersen ◽  
Thomas Batchelor ◽  
Alexander Bagger ◽  
Jan Rossmeisl

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we provide a framework for tuning the composition of disordered multi-metallic alloys to control the selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds. By combining density functional theory (DFT) with supervised machine learning we predicted the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two HEAs. This allowed an optimization for the HEA compositions with increased likelihood for sites with weak hydrogen adsorption{to suppress the formation of molecular hydrogen (H2) and with strong CO adsorption to favor the reduction of CO. This led to the discovery of several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon compounds is expected, as well as insights into the rational design of disordered alloy catalysts for the CO2 and CO reduction reaction.


2020 ◽  
Vol 2020 (4) ◽  
pp. 16-22
Author(s):  
A.I. Ustinov ◽  
◽  
V.S. Skorodzievskii ◽  
S.A. Demchenkov ◽  
S.S. Polishchuk ◽  
...  

2019 ◽  
Author(s):  
Dong Geun Kim ◽  
Yong Hee Jo ◽  
Junha Yang ◽  
Won-Mi Choi ◽  
Hyoung Seop Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document