On the microstructure and high-temperature stability of nano-grained Zircaloy-4

2022 ◽  
Vol 210 ◽  
pp. 114410
Author(s):  
Lucia Chen ◽  
Zhiyang Wang ◽  
Hanliang Zhu ◽  
Patrick A. Burr ◽  
Jiangtao Qu ◽  
...  
Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS NO6455 is a nickel-chromium-molybdenum alloy with outstanding high-temperature stability as shown by high ductility and corrosion resistance even after long-time aging in the range 1200-1900 F. The alloy also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-367. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


2006 ◽  
Vol 317-318 ◽  
pp. 501-504 ◽  
Author(s):  
Mineaki Matsumoto ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Effect of La2O3 addition on thermal conductivity and high temperature stability of YSZ coating produced by EB-PVD was investigated. La2O3 was selected as an additive because it had a significant effect on suppressing densification of YSZ. The developed coating showed extremely low thermal conductivity as well as high resistance to sintering. Microstructural observation revealed that the coating had fine feather-like subcolumns and nanopores, which contributed to limit thermal transport. These nanostructures were thought to be formed by suppressing densification during deposition.


Sign in / Sign up

Export Citation Format

Share Document