crystallisation behaviour
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
pp. 103094
Author(s):  
Tao Ma ◽  
Peng Song ◽  
Quan Dong ◽  
Jun Tan ◽  
Taihong Huang ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3612
Author(s):  
Stefan Gschwander ◽  
Sophia Niedermaier ◽  
Sebastian Gamisch ◽  
Moritz Kick ◽  
Franziska Klünder ◽  
...  

Phase-change materials (PCM) play off their advantages over conventional heat storage media when used within narrow temperature ranges. Many cooling and temperature buffering applications, such as cold storage and battery cooling, are operated within small temperature differences, and therefore, they are well-suited for the application of these promising materials. In this study, the storage capacities of different phase-change material emulsions are analysed under consideration of the phase transition behaviour and supercooling effect, which are caused by the submicron size scale of the PCM particles in the emulsion. For comparison reasons, the same formulation for the emulsions was used to emulsify 35 wt.% of different paraffins with different purities and melting temperatures between 16 and 40 °C. Enthalpy curves based on differential scanning calorimeter (DSC) measurements are used to calculate the storage capacities within the characteristic and defined temperatures. The enthalpy differences for the emulsions, including the first phase transition, are in a range between 69 and 96 kJ/kg within temperature differences between 6.5 and 10 K. This led to an increase of the storage capacity by a factor of 2–2.7 in comparison to water operated within the same temperature intervals. The study also shows that purer paraffins, which have a much higher enthalpy than blends, reveal, in some cases, a lower increase of the storage capacity in the comparison due to unfavourable crystallisation behaviour when emulsified. In a second analysis, the stability of emulsions was investigated by applying 100 thermal cycles with defined mechanical stress at the same time. An analysis of the viscosity, particle size and melting crystallisation behaviour was done by showing the changes in each property due to the cycling.


2020 ◽  
pp. 106680
Author(s):  
Chong He ◽  
Alexander Ilyushechkin ◽  
Jin Bai ◽  
San Shwe Hla ◽  
Ling-Xue Kong ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1731
Author(s):  
Dorota Kolbuk ◽  
Oliwia Jeznach ◽  
Michał Wrzecionek ◽  
Agnieszka Gadomska-Gajadhur

This study was conducted as a first step in obtaining eco-friendly fibres for medical applications using a synthesised oligomer poly(glycerol succinate) (PGSu) as an additive for synthetic poly(L-lactic acid) (PLLA) and poly (L-lactide-co-caprolactone) (PLCL). The effects of the oligomer on the structure formation, morphology, crystallisation behaviour, and mechanical properties of electrospun bicomponent fibres were investigated. Nonwovens were investigated by means of scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and mechanical testing. The molecular structure of PLLA fibres is influenced by the presence of PGSu mainly acting as an enhancer of molecular orientation. In the case of semicrystalline PLCL, chain mobility was enhanced by the presence of PGSu molecules, and the crystallinity of bicomponent fibres increased in relation to that of pure PLCL. The mechanical properties of bicomponent fibres were influenced by the level of PGSu present and the extent of crystal formation of the main component. An in vitro study conducted using L929 cells confirmed the biocompatible character of all bicomponent fibres.


Polymer ◽  
2020 ◽  
Vol 201 ◽  
pp. 122587 ◽  
Author(s):  
Lorena Amoroso ◽  
Ellen L. Heeley ◽  
Sivaram Nishal Ramadas ◽  
Tony McNally

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 214 ◽  
Author(s):  
Eleanor C. L. Jones ◽  
Luis M. Bimbo

The poor aqueous solubility of new and existing drug compounds represents a significant challenge in pharmaceutical development, with numerous strategies currently being pursued to address this issue. Amorphous solids lack the repeating array of atoms in the structure and present greater free energy than their crystalline counterparts, which in turn enhances the solubility of the compound. The loading of drug compounds into porous materials has been described as a promising approach for the stabilisation of the amorphous state but is dependent on many factors, including pore size and surface chemistry of the substrate material. This review looks at the applications of mesoporous materials in the confinement of pharmaceutical compounds to increase their dissolution rate or modify their release and the influence of varying pore size to crystallise metastable polymorphs. We focus our attention on mesoporous silicon, due to the ability of its surface to be easily modified, enabling it to be stabilised and functionalised for the loading of various drug compounds. The use of neutron and synchrotron X-ray to examine compounds and the mesoporous materials in which they are confined is also discussed, moving away from the conventional analysis methods.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Ibrahim Ahmad ◽  
Hyun-Kyung Kim ◽  
Suleyman Deveci ◽  
R. Kumar

The effect of carbon black (CB) and microwave-induced plasma graphene (g) on the crystallisation kinetics of the multimodal high-density polyethylene was studied under non-isothermal conditions. The non-isothermal crystallisation behaviour of the multimodal-high-density polyethylene (HDPE), containing up to 5 wt.% graphene, was compared with that of neat multimodal-HDPE and its carbon black based nanocomposites. The results suggested that the non-isothermal crystallisation behaviour of polyethylene (PE)-g nanocomposites relied significantly on both the graphene content and the cooling rate. The addition of graphene caused a change in the mechanism of the nucleation and the crystal growth of the multimodal-HDPE, while carbon black was shown to have little effect. Combined Avrami and Ozawa equations were shown to be effective in describing the non-isothermal crystallisation behaviour of the neat multimodal-HDPE and its nanocomposites. The mean activation energy barrier (ΔE), required for the transportation of the molecular chains from the melt state to the growing crystal surface, gradually diminished as the graphene content increased, which is attributable to the nucleating agent effect of graphene platelets. On the contrary, the synergistic effect resulting from the PE-CB nanocomposite decreased the ΔE of the neat multimodal-HDPE significantly at the lowest carbon black content.


Sign in / Sign up

Export Citation Format

Share Document