Restless legs syndrome and central nervous system gamma-aminobutyric acid: preliminary associations with periodic limb movements in sleep and restless leg syndrome symptom severity

2014 ◽  
Vol 15 (10) ◽  
pp. 1225-1230 ◽  
Author(s):  
John W. Winkelman ◽  
Laura Schoerning ◽  
Sam Platt ◽  
J.Eric Jensen
Crustaceana ◽  
2020 ◽  
Vol 93 (9-10) ◽  
pp. 1123-1134
Author(s):  
Kanjana Khornchatri ◽  
Jirawat Saetan ◽  
Sirirak Mukem ◽  
Prasert Sobhon ◽  
Tipsuda Thongbuakaew

Abstract Gamma-aminobutyric acid (GABA) is a neurotransmitter that is widely spread in vertebrate and invertebrate nervous systems and modulates essential physiological roles. Previous studies have reported the distribution of several neurotransmitters throughout the central nervous system (CNS) of decapod crustaceans. However, the existence and distribution of GABA in the mud crab’s, Scylla olivacea, CNS has still not been reported. In this study, we investigated the distribution of GABA using immunohistochemistry. The result revealed that GABA immunoreactivity (-ir) was observed in neurons and fibres throughout the CNS, including the eyestalk, brain, and ventral nerve cord of S. olivacea. Therefore, the existence and extensive distribution pattern of GABA in the CNS of the male mud crab suggest its possible roles in feeding, locomotion, and also reproduction.


1977 ◽  
Vol 40 (2) ◽  
pp. 446-452 ◽  
Author(s):  
P. B. Sargent ◽  
K. W. Yau ◽  
J. G. Nicholls

1. A systematic study has been made of the sensitivity of identified sensory and motoneurons in the leech central nervous system to chemical transmitter substances. 2. The following substances elicited responses from the cell bodies of individual neurons: acetylcholine, 5-hydroxytryptamine, gamma-aminobutyric acid, glutamic acid, glycine, dopamine, and norepinephrine. Since the cell bodies of leech neurons are free of synapses, the receptors that give rise to these responses are extrasynaptic. 3. Sensory and motoneurons of different function had characteristic complements of extrasynaptic receptors. For example, mechanosensory cells responding to light touch, to pressure, and to noxious stimuli could be distinguished by their responses to iontophoretically applied compounds. For one of these modalities (nociceptive), neurons with different receptive fields but otherwise similar properties had markedly distinct extrasynaptic receptors. The possible significance of extrasynaptic receptors is discussed.


1963 ◽  
Vol 26 (5) ◽  
pp. 721-728 ◽  
Author(s):  
J. Dudel ◽  
R. Gryder ◽  
A. Kaji ◽  
S. W. Kuffler ◽  
D. D. Potter

1985 ◽  
Vol 33 (3) ◽  
pp. 240-248 ◽  
Author(s):  
P Somogyi ◽  
A J Hodgson ◽  
I W Chubb ◽  
B Penke ◽  
A Erdei

An antiserum to gamma-aminobutyric acid (GABA) was tested for the localization of GABAergic neurons in the central nervous system using the unlabeled antibody enzyme method under pre- and postembedding conditions. GABA immunostaining was compared with glutamate decarboxylase (GAD) immunoreactivity in the cerebellar cortex and in normal and colchicine-injected neocortex and hippocampus of cat. The types, distribution, and proportion of neurons and nerve terminals stained with either sera showed good agreement in all areas. Colchicine treatment had little effect on the density of GABA-immunoreactive cells but increased the number of GAD-positive cells to the level of GABA-positive neurons in normal tissue. GABA immunoreactivity was abolished by solid phase adsorption to GABA and it was attenuated by adsorption to beta-alanine or gamma-amino-beta-hydroxybutyric acid, but without selective loss of immunostaining. Reactivity was not affected by adsorption to glutamate, aspartate, taurine, glycine, cholecystokinin, or bovine serum albumin. The concentration (0.05-2.5%) of glutaraldehyde in the fixative was not critical. The antiserum allows the demonstration of immunoreactive GABA in neurons containing other neuroactive substances; cholecystokinin and GABA immunoreactivities have been shown in the same neurons of the hippocampus. In conclusion, antisera to GABA are good markers for the localization of GABAergic neuronal circuits.


1989 ◽  
Vol 67 (1) ◽  
pp. 1-13 ◽  
Author(s):  
I. R. Moss ◽  
J. G. Inman

During ontogeny, the central nervous system undergoes neuronal growth, regression, and remodeling. The development of neurotransmitter and modulator systems is a plastic process with individual temporal characteristics for each system. These characteristics include the synthesis, degradation, or uptake of neurochemicals and, largely independently, the appearance of their receptors. Message transmission during ontogeny is compounded by the variable development of these systems and by the coexistence and cofunction among these chemicals. Nine neurochemical systems are discussed: adenosine, gamma-aminobutyric acid, opioids, prostaglandins, serotonin, progesterone, substance P, thyrotropin-releasing hormone, and the catecholamines. The possible role of each of these in natural perinatal respiratory control is evaluated according to predetermined criteria. These include the presence of a substance system in respiratory-related regions, physiologically appropriate changes in its concentration in these regions, elicitation of respiratory effects by agonists and antagonists, and abolition with an antagonist of the effect of a substance during its presumed activation by a physiological process. It is suggested that excessive levels of suppressant neuromodulators or an imbalance among neurochemicals can partly explain the special features of respiratory control in the perinatal period.


Sign in / Sign up

Export Citation Format

Share Document