Force sensor based online tool wear monitoring using distributed Gaussian ARTMAP network

2013 ◽  
Vol 192 ◽  
pp. 111-118 ◽  
Author(s):  
Guofeng Wang ◽  
Zhiwei Guo ◽  
Yinwei Yang
2021 ◽  
Vol 252 ◽  
pp. 01046
Author(s):  
Shan Fan ◽  
Yi Huang ◽  
Haixia Zeng

At present, many kinds of sensors are used for on-line monitoring of cutting process, tool identification and timely replacement. However, most of the original monitoring signals extracted from the cutting process are time series signals, which contain too much process noise. As the signal noise is relatively low, it is difficult to establish a direct relationship with the tool wear. Therefore, how to obtain the effective information from the online monitoring signal and extract the characteristics that can directly reflect the tool wear from the complex original signal, so as to establish an effective and reliable tool wear monitoring system, is the key and difficult problem in the research of the online monitoring technology of tool wear. Firstly, an experimental platform based on the force sensor for on-line monitoring of tool wear was built, and the signal obtained by the force sensor was used to monitor the tool wear, and the feature information was extracted and fused. The innovation of the project lies in the use of Gaussian process regression (GPR) method to predict the tool wear, the use of feature dimensional rise technology, to reduce the impact of noise, on the premise of ensuring the prediction accuracy, improve the confidence interval of GPR prediction results, improve the stability and reliability of the monitoring process.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091920 ◽  
Author(s):  
Panagiotis Stavropoulos ◽  
Alexios Papacharalampopoulos ◽  
Thanassis Souflas

Tool wear monitoring using vibrations is a complex task, due to various simultaneously occurring vibration sources and due to distortion of the signals acquired. This work investigates the mechanism by which tool wear information is concealed within acquired process-intrinsic vibration signals. Excluding other sources of vibration, such as machine-related, is attempted utilizing process simulations. As a case study, face milling is performed for three different cutting speeds. At first, the resulted simulated wear curves have been compared with experimental ones resulted under the same cutting conditions. Then, a quantification of the effect of tool wear on the acquired signals is presented.


2012 ◽  
Vol 13 (1) ◽  
pp. 702-706 ◽  
Author(s):  
Jaharah A. Ghani ◽  
Muhammad Rizal ◽  
Mohd Zaki Nuawi ◽  
Che Hassan Che Haron

Author(s):  
C K Nirala ◽  
P Saha

In micro-electro-discharge machining drilling, the problem of tool wear is a well-known fact. In order to minimize the effect of tool wear on the accuracy of fabricated product, an online tool wear monitoring and compensation system needs to be integrated with the micro-electro-discharge machining machine. The existing monitoring and compensation system very much relies on the pulse discrimination. The available systems assume that pulses are isoenergetic and are applicable to a single parametric setting only. In order to make the system more robust, a new pulse discrimination and tool wear compensation strategy which is suitable for a wide range of parametric settings is proposed. In this context, an empirical relationship between “average energy” (AE) and “volume removal per discharge” (VRD) is established and verified with experimental results.


Sign in / Sign up

Export Citation Format

Share Document