Design and characterization of a thin linear ultrasonic motor for miniature focus systems

2021 ◽  
pp. 112797
Author(s):  
Shunsuke Izuhara ◽  
Tomoaki Mashimo
AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025238
Author(s):  
Danhong Lu ◽  
Qiuxiang Lin ◽  
Yanxiang Han ◽  
Bingxun Chen ◽  
Chunrong Jiang ◽  
...  

2016 ◽  
Vol 851 ◽  
pp. 244-248
Author(s):  
Ya Fei Zhang ◽  
Zhi Yuan Yao ◽  
Bi Cheng Wu

The glass nanopore produced by the physical method has better physical characteristics, higher strength, stronger stability, longer life and other significant features compared with the chemical method. The purpose of this paper is to study DNA sequencing (973 project) to provide experimental basis for preparation of glass capillary 5nm 3D nanochannel In this paper, we design a set of glass capillary tension system which is controlled by laser heating and linear ultrasonic motor and produced successfully the device for the preparation of nanopore below 50 nm. In addition, the use of micro droplet generation system has carried out preliminary characterization of nanopore drawn devices. Seen from the characterization, the nanopore device fabricated can indeed produce a through-hole.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 57249-57256 ◽  
Author(s):  
Shaopeng He ◽  
Shengjun Shi ◽  
Yunhe Zhang ◽  
Weishan Chen

2018 ◽  
Vol 89 (8) ◽  
pp. 085001 ◽  
Author(s):  
Pingqing Fan ◽  
Xuecheng Shu ◽  
Tao Yuan ◽  
Chaodong Li

2011 ◽  
Vol 189-193 ◽  
pp. 2961-2964 ◽  
Author(s):  
Tie Min Zhang ◽  
Luo Ping ◽  
Liang Li

A prototype for multi-mode linear ultrasonic motor has been proposed and designed. It is designed using a combination of the first longitudinal and the first bending mode. The piezoelectric ceramics convert energy using the longitudinal d33 effect which allows an improved reliability, large vibration amplitudes and excellent piezoelectric coupling. The normal direction motion of the driving element is excited by the first longitudinal mode. The tangential direction motion of the driving element is excited by the first bending mode. The resulting displacement of the driving element is transmitted by the frictional force between the vibrator and the rail in a linear motion. The analysis on the modals of the composite vibrator by using the ANSYS finite element software has been presented in this paper. Finally, the vibrator structure of the motor and the motor's own structures are designed. The basic design is discussed and simulations are compared with the experimental results, the results show that the motor characteristics can be optimized for a particular task by choosing the appropriate operating parameters such as exciting voltage, exciting frequency and normal force.


2020 ◽  
Vol 309 ◽  
pp. 112036
Author(s):  
Xudong Xin ◽  
Yang Yu ◽  
Jingen Wu ◽  
Xiangyu Gao ◽  
Zhanmiao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document