High ionic conductivity and mechanical strength of solid polymer electrolytes based on NBR/ionic liquid and its application to an electrochemical actuator

2007 ◽  
Vol 128 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Misuk Cho ◽  
Hyunjoo Seo ◽  
Jedo Nam ◽  
Hyoukryeol Choi ◽  
Jachoon Koo ◽  
...  
2015 ◽  
Vol 6 (7) ◽  
pp. 1052-1055 ◽  
Author(s):  
Suting Yan ◽  
Jianda Xie ◽  
Qingshi Wu ◽  
Shiming Zhou ◽  
Anqi Qu ◽  
...  

A solid polymer electrolyte fabricated using ion containing microgels manifests high ionic conductivity for potential use in lithium batteries.


2018 ◽  
Vol 6 (18) ◽  
pp. 8514-8522 ◽  
Author(s):  
Fadoi Boujioui ◽  
Flanco Zhuge ◽  
Helen Damerow ◽  
Mohammad Wehbi ◽  
Bruno Améduri ◽  
...  

Solid polymer electrolytes with high ionic conductivity have been prepared from a microphase separated fluorinated copolymer bearing cyclocarbonate side groups.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43581-43588 ◽  
Author(s):  
Juan Wang ◽  
Xiaohui He ◽  
Hongyu Zhu ◽  
Defu Chen

Solid polymer electrolytes with high ionic conductivity have been prepared based on an imidazolium-functionalized norbornene ionic liquid block copolymer.


2005 ◽  
Vol 89 (2-3) ◽  
pp. 390-394 ◽  
Author(s):  
Fang Yuan ◽  
Hong-Zheng Chen ◽  
Hui-Ying Yang ◽  
Han-Ying Li ◽  
Mang Wang

RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20373-20383 ◽  
Author(s):  
Ta-Ming Liu ◽  
Diganta Saikia ◽  
Sze-Yuan Ho ◽  
Ming-Chou Chen ◽  
Hsien-Ming Kao

The blended hybrid solid polymer electrolyte possessed a high ionic conductivity value of 1.2 × 10−4 S cm−1 at 30 °C.


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


Sign in / Sign up

Export Citation Format

Share Document