Plasmonic hotspot engineering of Ag-coated polymer substrates with high reproducibility and photothermal stability

2021 ◽  
pp. 131110
Author(s):  
Jun-Hyung Sim ◽  
Soo Hyun Lee ◽  
Jun-Yeong Yang ◽  
Won-Chul Lee ◽  
ChaeWon Mun ◽  
...  
2017 ◽  
pp. 29-38 ◽  
Author(s):  
E. P. Fisenko ◽  
J. P. Sich ◽  
N. N. Vetsheva

Objective:a comparative “blind” assessment of the thyroid nodules identified by ultrasound, according to the TI-RADS scale in various modifications.Materials and methods.Retrospective analysis of 149 echograms  of thyroid nodules by three independent experts was performed (the  experience of ultrasound of thyroid ultrasound for more than 7 years).Results. In solid nodules, high-specific large (more than 94%) and  small (more than 90%) ultrasound signs of thyroid cancer have been identified. The nodes are stratified according to the TI-RADS system: 1 – in the modification J.Y. Kwak et al. (2011), 2 – according to the  proposed system, taking into account small ultrasound signs of  thyroid cancer. High reproducibility of both systems are obtained. In the first system 13.7% of cancer nodes fell into the category of TI- RADS 3 (benign formations), in the second system only 5% of  cancers fell into the category of TI-RADS 3, which is important for  biopsy selection. The sensitivity of the first system was TI-RADS  82.05%, of the second system – 94.87%.Conclusions.Classification of TI-RADS can be used to interpret the  ultrasound results of thyroid nodules, taking into account both the  main large and small ultrasound signs of cancer. For its validation in  our country, it is necessary to further broad discussion of the proposed TI-RADS system.


Author(s):  
Nurul Hanani Manab ◽  
Elfarizanis Baharudin ◽  
Fauziahanim Che Seman ◽  
Alyani Ismail

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Theodor Chitlaru ◽  
Erez Bar-Haim ◽  
Liat Bar-On ◽  
Shahar Rotem ◽  
Hila Cohen ◽  
...  

HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20–30% loss of weight at day 7 and full recovery at days 11–13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 889
Author(s):  
Klára Fajstavrová ◽  
Silvie Rimpelová ◽  
Dominik Fajstavr ◽  
Václav Švorčík ◽  
Petr Slepička

The development of new biocompatible polymer substrates is still of interest to many research teams. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with a technique of improved phase separation. Plasma exposure served for substrate activation and modification of surface properties, such as roughness, chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from polystyrene solution. The properties of the pattern strongly depended on the primary plasma exposure of the FEP substrate. The physico-chemical properties such as changes of the surface chemistry, wettability, and morphology of the prepared pattern were determined. The cell response of primary fibroblasts and osteoblasts was studied on a honeycomb pattern. The prepared honeycomb-like pattern from polystyrene showed an increase in cell viability and a positive effect on cell adhesion and proliferation for both primary fibroblasts and osteoblasts.


2020 ◽  
Vol 40 (6) ◽  
pp. 495-506
Author(s):  
Chun-Chun Huang ◽  
Syang-Peng Rwei ◽  
Yun-Shao Huang ◽  
Yao-Chi Shu

AbstractIn this study, composite membranes produced by combining both biopolymer chitosan (CS) and kaolin solvent-free fluid (kaolin-SF) were used as substitutes for the electrolyte membranes in direct-methanol fuel cells. To improve the interfacial morphologies between organic and inorganic substances, kaolin-SF was prepared using the ion exchange method. Subsequently, kaolin-SF of various doping proportions was mixed with CS crosslinked with sulfuric acid to produce thin membranes. The results of heat exhaustion and scanning electron microscope image analysis indicated that kaolin-SF was successfully doped into the CS polymer substrates, and this addition enhanced the thermal stability and mechanical properties of the CS polymer substrates. As long as the concentration of kaolin-SF was below 5 wt.%, the water absorption rate and proton conductivity of the CS/kaolin-SF composite membranes increased along with the kaolin-SF content. These results indicate that CS/kaolin-SF composite membranes are suitable for practical applications.


1989 ◽  
Vol 38 (11) ◽  
pp. 2037-2055 ◽  
Author(s):  
S. Jönsson ◽  
C. G. Gölander ◽  
A. Biverstedt ◽  
S. Göthe ◽  
P. Stenius

2009 ◽  
Vol 53 (6) ◽  
pp. 22-25
Author(s):  
David Bieniak
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document