primary fibroblasts
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 127)

H-INDEX

52
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Brandon Cieniewicz ◽  
Varvara Kirillov ◽  
Isabel Daher ◽  
Xiaofan Li ◽  
Darby G Oldenburg ◽  
...  

Non-canonical NF-kappaB signaling is activated in B cells via TNF receptor superfamily members CD40, Lymphotoxin beta-R, and BAFF-R. The non-canonical pathway is required at multiple stages of B-cell maturation and differentiation, including the germinal center reaction. However, the role of this pathway in gammaherpesvirus latency is not well understood. Murine gammaherpesvirus 68 (MHV68) is a genetically tractable system used to define pathogenic determinants. Mice lacking the BAFF-R exhibit defects in splenic follicle formation and are greatly reduced for MHV68 latency. We report a novel approach to disrupt non-canonical NF-kappaB signaling exclusively in cells infected with MHV68. We engineered a recombinant virus that expresses a dominant negative form of IKKalpha, named IKKα-SA, with S176A and S180A mutations that prevent phosphorylation by NIK. We controlled for the transgene insertion by introducing two all-frame stop codons into the IKKα-SA gene. The IKKα-SA mutant but not the IKKα-SA.STOP control virus impaired LTbetaR-mediated activation of NF-kappaB p52 upon fibroblast infection. IKKα-SA expression did not impact replication in primary fibroblasts or in the lungs of mice following intranasal inoculation. However, the IKKα-SA mutant was severely defective in colonization of the spleen and in the establishment of latency compared to the IKKα-SA.STOP control and WT MHV68 at 16 dpi. Reactivation was undetectable in splenocytes infected with the IKKα-SA mutant, but reactivation in peritoneal cells was not impacted by IKKα-SA. Taken together, the non-canonical NF-kappaB signaling pathway is essential for the establishment of latency in the secondary lymphoid organs of mice infected with the murine gammaherpesvirus pathogen MHV68.


Author(s):  
Jeffrey D. Ritzenthaler ◽  
Edilson Torres-Gonzalez ◽  
Yuxuan Zheng ◽  
Igor N. Zelko ◽  
Victor Van Berkel ◽  
...  

Increased senescence and expression of pro-fibrotic genes in old lung fibroblasts contribute to disrepair responses. We reported that primary lung fibroblasts from old mice have lower expression and activity of the cystine transporter Slc7a11/xCT than cells from young mice, resulting in changes in both the intracellular and extracellular redox environments. This study examines the hypothesis that low Slc7a11 expression in old lung fibroblasts promotes senescence and pro-fibrotic gene expression. The levels of mRNA and protein of Slc7a11, senescence markers, and pro-fibrotic genes were measured in primary fibroblasts from the lungs of old (24 months) and young (3 months) mice. In addition, the effects of genetic and pharmacological manipulation of Slc7a11 were investigated. We found that decreased expression of Slc7a11 in old cells was associated with elevated markers of senescence (p21, p16, p53 and b-galactosidase) and increased expression of pro-fibrotic genes (Tgfb1, Smad3, Acta2, Fn1, Col1a1 and Col5a1). Silencing of Slc7a11 in young cells replicated the aging phenotype, whereas overexpression of Slc7a11 in old cells decreased expression of senescence and pro-fibrotic genes. Young cells were induced to express the senescence and pro-fibrotic phenotype by sulfasalazine, an Slc7a11 inhibitor, whereas treatment of old cells with sulforaphane, an Slc7a11 inducer, decreased senescence without affecting pro-fibrotic genes. Like aging cells, idiopathic pulmonary fibrosis fibroblasts show decreased Slc7a11 expression and increased pro-fibrotic markers. In short, old lung fibroblasts manifest a pro-fibrotic and senescence phenotype that is modulated by genetic or pharmacological manipulation of Slc7a11.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nadja Anneliese Ruth Ring ◽  
Maria Concetta Volpe ◽  
Tomaž Stepišnik ◽  
Maria Grazia Mamolo ◽  
Panče Panov ◽  
...  

SummaryTherapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our “wet” screen and used “dry” machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo (“wet”) and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor β pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.


Author(s):  
Mario C. Manresa ◽  
Amanda Wu ◽  
Quan M. Nhu ◽  
Austin W. T. Chiang ◽  
Kevin Okamoto ◽  
...  

AbstractFibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT’s transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 163-163
Author(s):  
Adam Salmon

Abstract The progressive decline of resilience during the aging process across multiple functional systems suggests basic biological mechanisms of regulation. We exploited a primary cell model to identify markers of cellular resilience or the ability of cells in culture to respond and return to homeostasis following acute challenge including metabolic, oxidative, or proteostatic stress. Using primary fibroblasts from minimally-invasive skin biopsies of genetically heterogeneous mice, we are able to determine individual cellular resilience as well as the normal lifespan and healthspan of each donor. Our studies suggest donor age and sex affect cellular resilience and that this measure of resilience can predict functional outcomes in some interventional studies. While longevity studies continue, these studies point to a potential highly important marker of healthspan and longevity as well as a model to delineate the biology of resilience in animal and translational models.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 665-665
Author(s):  
Amanda Stock ◽  
Kun Wang ◽  
Chengyu Liu ◽  
Ross McDevitt ◽  
Chongkui Sun ◽  
...  

Abstract Telomere attrition is associated with telomere biology disorders and age-related diseases. In telomere biology disorders, telomere uncapping induces a DNA damage response that evokes cell death or senescence. However, a causal mechanism for telomere attrition in age-related diseases remains elusive. Telomere capping and integrity are maintained by shelterin, a six-protein complex. Rap1 is the only shelterin member that is not required for telomere capping and is expressed at non-telomeric genomic and cytosolic regions. The objective of this study was to determine aberrant phenotypes attributed to non-telomeric Rap1. To test this, we generated a Rap1 mutant knock-in (KI) mouse model using CRISPR/Cas9 editing, in which Rap1 at telomeres is prevented, leaving only non-telomeric Rap1. Cell fractionation/western blotting of primary fibroblasts from Rap1 KI mice demonstrated decreased Rap1 expression and Rap1 re-localization off telomeres, with an altered cellular distribution. This same difference in Rap1 is also observed in human cells with telomere erosion, indicating that aberrant Rap1 in our model may recapitulate Rap1 in aging and human telomere biology disorders. Compared to wild-type control mice, Rap1 KI mice exhibited increased body weight, altered cytokine levels, behavioral deficits, and decreased lifespan. In conclusion, our results reveal a novel mechanism by which telomere shortening may contribute to age-related pathologies by disrupting Rap1 expression and cell localization.


2021 ◽  
Vol 2 ◽  
Author(s):  
Amanda J Stock ◽  
Yie Liu

Telomeres are specialized nucleoprotein structures that form protective caps at the ends of chromosomes. Short telomeres are a hallmark of aging and a principal defining feature of short telomere syndromes, including dyskeratosis congenita (DC). Emerging evidence suggests a crucial role for critically short telomere-induced DNA damage signaling and mitochondrial dysfunction in cellular dysfunction in DC. A prominent factor linking nuclear DNA damage and mitochondrial homeostasis is the nicotinamide adenine dinucleotide (NAD) metabolite. Recent studies have demonstrated that patients with DC and murine models with critically short telomeres exhibit lower NAD levels, and an imbalance in the NAD metabolome, including elevated CD38 NADase and reduced poly (ADP-ribose) polymerase and SIRT1 activities. CD38 inhibition and/or supplementation with NAD precursors reequilibrate imbalanced NAD metabolism and alleviate mitochondrial impairment, telomere DNA damage, telomere dysfunction-induced DNA damage signaling, and cellular growth retardation in primary fibroblasts derived from DC patients. Boosting NAD levels also ameliorate chemical-induced liver fibrosis in murine models of telomere dysfunction. These findings underscore the relevance of NAD dysregulation to telomeropathies and demonstrate how NAD interventions may prove to be effective in combating cellular and organismal defects that occur in short telomere syndromes.


2021 ◽  
Author(s):  
Marina Sourouni ◽  
Carl Opitz ◽  
Isabel Radke ◽  
Ludwig Kiesel ◽  
Joke Tio ◽  
...  

Abstract PurposeDuctal carcinoma in situ (DCIS) is a preform of breast cancer. 13-50% of these lesions will progress to invasive breast cancer (IBC), but the individual progression risk cannot be estimated. Therefore, all patients receive the same therapy, resulting in potential overtreatment of a large proportion of patients. The role of the tumor microenvironment (TME) and especially of fibroblasts appears to be critical in DCIS development and a better understanding of its role may aid individualized treatment.MethodsPrimary fibroblasts isolated from benign or malignant punch biopsies of the breast and MCF10DCIS.com cells were seeded in a 3D cell culture system. The fibroblasts were cultured in a type I collagen layer beneath a Matrigel layer with MCF10DCIS.com cells. Dye-quenched (DQ) fluorescent collagen was used in both layers to demonstrate proteolysis. Confocal microscopy was performed on day 2, 7 and 14 to reveal morphological changes, which could indicate the transition to an invasive phenotype.ResultsMCF10DCIS.com cells form smooth, round spheroids in co-culture with healthy fibroblasts, but show an irregular shape with spikes in co-culture with tumor-associated fibroblasts (TAFs). These morphological changes could represent the progression to an invasive phenotype. In addition, TAFs show a higher proteolytic activity compared to healthy fibroblasts. The distance between DCIS cells and fibroblasts decreases over time.ConclusionTAFs seem to play an important role in the progression of DCIS to IBC. The better characterization of the TME could lead to the identification of DCIS lesions with high or low risk of progression. This could enable personalized oncological therapy, prevention of overtreatment and individualized hormone replacement therapy after DCIS.


2021 ◽  
Vol 7 (2) ◽  
pp. 367-370
Author(s):  
Andreas Brietzke ◽  
Rudolf F. Guthoff ◽  
Niels Grabow ◽  
Thomas Stahnke

Abstract The development of strategies for fibrosis prevention is a perpetual cutting the edge challenge, especially in ophthalmologic fistulating surgery. Stenosis of liquid draining implants but also fibrotic activation of implant-associated tissues are major clinical examples for fibrosis induced implant failure. Implant coating or incorporation of antifibrotic agents offer a promising approach to minimise failure rates. Nintendanib is a drug that has been successfully used for the treatment of ideopathic pulmonary fibrosis since 2015. In this study, we evaluated the suitability of Nintedanib for ophthalmic therapeutic treatment. Therefore, the antifibrotic potential of the active substance was tested with a fibrotic cell culture model on primary fibroblasts of the Tenon (hTF) in vitro. The concentration of 10μM Nintedanib demonstrated a marginal effect on cell viability but coincidently diminished cell proliferation remarkably. Both, immunocytochemical and Western blot analyses revealed a significant inhibitory effect of Nintedanib on the TGF-β1 induced expression of the extracellular matrix (ECM) components fibronectin and collagen. Moreover it supressed the expression and formation of stress fibres of the fibrotic marker protein alpha smooth muscle actin (α-SMA).


Sign in / Sign up

Export Citation Format

Share Document