scholarly journals Effects of climate warming and elevated CO 2 on autotrophic nitrification and nitrifiers in dryland ecosystems

2016 ◽  
Vol 92 ◽  
pp. 1-15 ◽  
Author(s):  
Hang-Wei Hu ◽  
Catriona A. Macdonald ◽  
Pankaj Trivedi ◽  
Ian C. Anderson ◽  
Yong Zheng ◽  
...  
2015 ◽  
Vol 12 (14) ◽  
pp. 11387-11422 ◽  
Author(s):  
G. Tang ◽  
J. A. Arnone III ◽  
P. Verburg ◽  
R. L. Jasoni

Abstract. We quantified the temporal trend and climatic sensitivity of vegetation phenology in dryland ecosystems in the US Great Basin during 1982–2011. Our results indicated that vegetation greenness in the Great Basin increased significantly during the study period, and this positive trend occurred in autumn but not spring and summer. Spatially, increases in vegetation greenness were more apparent in the northwestern, southeastern, and eastern Great Basin but less apparent in the central and southwestern Great Basin. In addition, the start of growing season (SOS) was not advanced while the end of growing season (EOS) was delayed significantly at a rate of 3.0 days per decade during the study period. The significant delay in EOS and lack of earlier leaf onset caused growing season length (GSL) to increase at a rate of 3.0 days per decade during 1982–2011. Interestingly, we found that the variation of mean vegetation greenness in the period of March to November (SSA) was not significantly correlated with its mean surface air temperature but was strongly correlated with its total precipitation. Seasonally, the variation of mean vegetation greenness in spring, summer, and autumn was mainly attributable to changes in pre-season precipitation in winter and spring. Nevertheless, climate warming played a strong role in extending GSL that in turn resulted in the upward trend in mean vegetation greenness during 1982–2011. Overall, our results suggested that changes in wintertime and springtime precipitation played a stronger role than temperature in affecting the interannual variability of vegetation greenness while climate warming was mainly responsible for the 30-year upward trend in the magnitudes of mean vegetation greenness in the dryland ecosystems during 1982–2011.


2015 ◽  
Vol 12 (23) ◽  
pp. 6985-6997 ◽  
Author(s):  
G. Tang ◽  
J. A. Arnone III ◽  
P. S. J. Verburg ◽  
R. L. Jasoni ◽  
L. Sun

Abstract. We quantified the temporal trend and climatic sensitivity of vegetation phenology in dryland ecosystems in the US Great Basin during 1982–2011. Our results indicated that vegetation greenness in the Great Basin increased significantly during the study period, and this positive trend occurred in autumn but not in spring and summer. Spatially, increases in vegetation greenness were more apparent in the northwestern, southeastern, and eastern Great Basin but less apparent in the central and southwestern Great Basin. In addition, the start of growing season (SOS) was not advanced while the end of growing season (EOS) was delayed significantly at a rate of 3.0 days per decade during the study period. The significant delay in EOS and lack of earlier leaf onset caused growing season length (GSL) to increase at a rate of 3.0 days per decade. Interestingly, we found that the interannual variation of mean vegetation greenness calculated for the period of March to November (spring, summer, and autumn – SSA) was not significantly correlated with mean surface air temperature in SSA but was strongly correlated with total precipitation. On a seasonal basis, the variation of mean vegetation greenness in spring, summer, and autumn was mainly attributable to changes in pre-season precipitation in winter and spring. Nevertheless, climate warming appeared to play a strong role in extending GSL that, in turn, resulted in the upward trend in mean vegetation greenness. Overall, our results suggest that changes in wintertime and springtime precipitation played a stronger role than temperature in affecting the interannual variability of vegetation greenness, while climate warming was mainly responsible for the upward trend in vegetation greenness we observed in Great Basin dryland ecosystems during the 30-year period from 1982 to 2011.


2000 ◽  
pp. 26-31
Author(s):  
E. I. Parfenova ◽  
N. M. Chebakova

Global climate warming is expected to be a new factor influencing vegetation redistribution and productivity in the XXI century. In this paper possible vegetation change in Mountain Altai under global warming is evaluated. The attention is focused on forest vegetation being one of the most important natural resources for the regional economy. A bioclimatic model of correlation between vegetation and climate is used to predict vegetation change (Parfenova, Tchebakova 1998). In the model, a vegetation class — an altitudinal vegetation belt (mountain tundra, dark- coniferous subalpine open woodland, light-coniferous subgolets open woodland, dark-coniferous mountain taiga, light-coniferous mountain taiga, chern taiga, subtaiga and forest-steppe, mountain steppe) is predicted from a combination of July Temperature (JT) and Complex Moisture Index (CMI). Borders between vegetation classes are determined by certain values of these two climatic indices. Some bioclimatic regularities of vegetation distribution in Mountain Altai have been found: 1. Tundra is separated from taiga by the JT value of 8.5°C; 2. Dark- coniferous taiga is separated from light-coniferous taiga by the CMI value of 2.25; 3. Mountain steppe is separated from the forests by the CMI value of 4.0. 4. Within both dark-coniferous and light-coniferous taiga, vegetation classes are separated by the temperature factor. For the spatially model of vegetation distribution in Mountain Altai within the window 84 E — 90 E and 48 N — 52 N, the DEM (Digital Elevation Model) was used with a pixel of 1 km resolution. In a GIS Package IDRISI for Windows 2.0, climatic layers were developed based on DEM and multiple regressions relating climatic indices to physiography (elevation and latitude). Coupling the map of climatic indices with the authors' bioclimatic model resulted into a vegetation map for the region of interest. Visual comparison of the modelled vegetation map with the observed geobotanical map (Kuminova, 1960; Ogureeva, 1980) showed a good similarity between them. The new climatic indices map was developed under the climate change scenario with summer temperature increase 2°C and annual precipitation increase 20% (Menzhulin, 1998). For most mountains under such climate change scenario vegetation belts would rise 300—400 m on average. Under current climate, the dark-coniferous and light-coniferous mountain taiga forests dominate throughout Mountain Altai. The chern forests are the most productive and floristically rich and are also widely distributed. Under climate warming, light-coniferous mountain taiga may be expected to transform into subtaiga and forest-steppe and dark-coniferous taiga may be expected to transform partly into chern taiga. Other consequences of warming may happen such as the increase of forest productivity within the territories with sufficient rainfall and the increase of forest fire occurrence over territories with insufficient rainfall.


2019 ◽  
Vol 79 (2) ◽  
pp. 159 ◽  
Author(s):  
Jessica G. Swindon ◽  
William K. Lauenroth ◽  
Daniel R. Schlaepfer ◽  
Ingrid C. Burke

Tellus B ◽  
2011 ◽  
Vol 63 (2) ◽  
Author(s):  
Kevin Chaefer ◽  
Tingjun Zhang ◽  
Lori Bruhwiler ◽  
Andrew P. Barrett

Sign in / Sign up

Export Citation Format

Share Document