vegetation map
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 14 (1) ◽  
pp. 232
Author(s):  
Defu Zou ◽  
Lin Zhao ◽  
Guangyue Liu ◽  
Erji Du ◽  
Guojie Hu ◽  
...  

An accurate and detailed vegetation map is of crucial significance for understanding the spatial heterogeneity of subsurfaces, which can help to characterize the thermal state of permafrost. The absence of an alpine swamp meadow (ASM) type, or an insufficient resolution (usually km-level) to capture the spatial distribution of the ASM, greatly limits the availability of existing vegetation maps in permafrost modeling of the Qinghai-Tibet Plateau (QTP). This study generated a map of the vegetation type at a spatial resolution of 30 m on the central QTP. The random forest (RF) classification approach was employed to map the vegetation based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. Validation using a train-test split (i.e., 70% of the samples were randomly selected to train the RF model, while the remaining 30% were used for validation and a total of 1000 runs) showed that the average overall accuracy and Kappa coefficient of the RF approach were 0.78 (0.68–0.85) and 0.69 (0.64–0.74), respectively. The confusion matrix showed that the overall accuracy and Kappa coefficient of the predicted vegetation map reached 0.848 (0.844–0.852) and 0.790 (0.785–0.796), respectively. The user accuracies for the ASM, alpine meadow, alpine steppe, and alpine desert were 95.0%, 83.3%, 82.4%, and 86.7%, respectively. The most important variables for vegetation type prediction were two vegetation indices, i.e., NDVI and EVI. The surface reflectance of visible and shortwave infrared bands showed a secondary contribution, and the brightness temperature and the surface temperature of the thermal infrared bands showed little contribution. The dominant vegetation in the study area is alpine steppe and alpine desert. The results of this study can provide an accurate and detailed vegetation map, especially for the distribution of the ASM, which can help to improve further permafrost studies.


2021 ◽  
Author(s):  
N.B. Ermakov ◽  
I.A. Pestunov ◽  
V.V. Korzhenevskiy ◽  
E.V. Ermakova ◽  
S.A. Rylov ◽  
...  

The study of diversity and ecological-phytocenotic mapping of the vegetation cover was carried out at the key area located in the eastern part of the Echki-Dag mountain range in the territory of the Lisya Bay Reserve (Eastern Crimea). A generalization of the classification and ecological patterns of vegetation was carried out to create a legend for a large-scale ecological-phytocenotic cartographic model (at the scale of 1:10000). The ecological-geomorphological series and combinations of xerophytic and mesoxerophytic plant communities indicating erosion-denudation processes on different substrates of the underlying parent rocks were the thematic basis of the cartographic model. The developed legend is based on the units of vegetation of the association rank obtained using the Braun – Blanquet method combined into ecological series in accordance with their position on the gradients of the leading ecological factors as well as on the hierarchy of phytochories determined by the categories of erosion-denudation relief of coastal slopes. The resulting vegetation map demonstrates the main regularities of the regional phyto-diversity and serves as the basis for assessing the resource potential of vegetation, its landscape-stabilizing and nature conservation value.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Ghalem Sarra ◽  
Hassani faiçal ◽  
Bouayad Ibtissam Sarah ◽  
Zettam Amine

This study allowed us to define on the one hand the biogeographical criteria, and on the other hand to develop a cartographic sketch of the physiognomy of Lavatera maritima in our study area. This work is devoted to the biogeographical analysis of Lavatera maritima in the Tlemcen Coast (Rachgoune 1 and 2, Béni-saf1 and 2 Oulhassa and Madrid). The biogeographic distribution shows the dominance of the Mediterranean element. A vegetation map can be viewed in different ways, as a physiognomy map showing the present state of vegetation, or as a land use map. The development of a cartographic test of the distribution of Lavatera maritima in the coast of Tlemcen aims to know the current status and range of this plant species.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 680
Author(s):  
Saverio Sciandrello ◽  
Salvatore Cambria ◽  
Gianpietro Giusso del Giusso del Galdo ◽  
Riccardo Guarino ◽  
Pietro Minissale ◽  
...  

A synthetic and updated overview about the vascular flora and vegetation of the Island of Capo Passero (SE-Sicily) is provided. These data issue from two series of field surveys—the first carried out between 1997 and 2000, and the second between 2005 and 2019 and mostly focused on refining and implementing vegetation data. The current islet’s flora consists of 269 taxa, of which 149 (58%) are annual plants. The Mediterranean species are largely prevailing, 108 (40%) of which have a strictly Mediterranean biogeographical status. The comparison with a species list published in 1919 and updated in 1957 suggest that, despite the overall prevalence of anemochorous taxa, the vertebrate fauna represents an important vector for the plant colonization of the island, while the immigration of myrmechocorous taxa does not compensate the extinction rate. As many as 202 phytosociological relevés, 191 of which issue from original recent field surveys, enabled identifying 12 different plant communities. The comparison with a vegetation map published in 1965 suggests a strong reduction in dune habitats (2120 and 2210 according to EU ‘Habitats’ Directive 92/43), as well as a deep disruption in the succession typical of the local psammophilous vegetation series. In order to preserve rare, endangered and protected plant species (such as Aeluropus lagopoides, Cichorium spinosum, Limonium hyblaeum, L. syracusanum, Poterium spinosum, Senecio pygmaeus and Spergularia heldreichii) and to stop the ongoing habitat degradation, urgent and effective conservation measures should be adopted for this tiny, yet precious islet.


2021 ◽  
Author(s):  
Jeff Galvin ◽  
Sarah Studd

The Sonoran Desert Network (SODN) conducted a vegetation mapping and characterization effort at the two districts of Saguaro National Park from 2010 to 2018. This project was completed under the National Park Service (NPS) Vegetation Mapping Inventory, which aims to complete baseline mapping and classification inventories at more than 270 NPS units. The vegetation map data were collected to provide park managers with a digital map product that meets national standards of spatial and thematic accuracy, while also placing the vegetation into a regional and national context. A total of 97 distinct vegetation communities were described: 83 exclusively at the Rincon Mountain District, 9 exclusively at the Tucson Mountain District, and 5 occurring in both districts. These communities ranged from low-elevation creosote (Larrea tridentata) shrub-lands spanning broad alluvial fans to mountaintop Douglas fir (Pseudotsuga menziesii) forests on the slopes of Rincon Peak. All 97 communities were described at the association level, each with detailed narratives including lists of species found in each association, their abundance, landscape features, and overall community structural characteristics. Only 15 of the 97 vegetation types were existing “accepted” types within the NVC. The others are newly de-scribed and specific to Saguaro National Park (and will be proposed for formal status within the NVC). This document is Volume III of three volumes comprising the Saguaro National Park Vegetation Mapping Inventory. This volume provides full type descriptions of the 97 associations identified and mapped during the project, and detailed in Volume I. Volume II provides abridged versions of these full descriptions, briefly describing the floristic and structural characteristics of the vegetation and showing representative photos of associations, their distribution, and an example of the satellite imagery for one polygon.


2021 ◽  
Author(s):  
Jeff Galvin ◽  
Sarah Strudd

The Sonoran Desert Network (SODN) conducted a vegetation mapping and characterization effort at the two districts of Saguaro National Park from 2010 to 2018. This project was completed under the National Park Service (NPS) Vegetation Mapping Inventory, which aims to complete baseline mapping and classification inventories at more than 270 NPS units. The vegetation map data were collected to provide park managers with a digital map product that meets national standards of spatial and thematic accuracy, while also placing the vegetation into a regional and national context. A total of 97 distinct vegetation communities were described: 83 exclusively at the Rincon Mountain District, 9 exclusively at the Tucson Mountain District, and 5 occurring in both districts. These communities ranged from low-elevation creosote (Larrea tridentata) shrub-lands spanning broad alluvial fans to mountaintop Douglas fir (Pseudotsuga menziesii) forests on the slopes of Rincon Peak. All 97 communities were described at the association level, each with detailed narratives including lists of species found in each association, their abundance, landscape features, and overall community structural characteristics. Only 15 of the 97 vegetation types were existing “accepted” types within the National Vegetation Classification (NVC). The others are newly described and specific to Saguaro National Park (and will be proposed for formal status within the NVC). This document is Volume II of three volumes comprising the Saguaro National Park Vegetation Mapping Inventory. This volume provides two-page summaries of the 97 associations identified and mapped during the project, and detailed in Volume I. Summaries are presented by district, starting with the Tucson Mountain District. These summaries are abridged versions of the full association descriptions found in Volume III.


2021 ◽  
Vol 38 ◽  
pp. 00142
Author(s):  
Moisey Zakharov ◽  
Mikhail Cherosov ◽  
Elena Troeva ◽  
Sebastien Gadal

For the first time, the geoinformation modelling and machine learning approaches have been used to study the vegetation cover of the mountainous part of North-Eastern Siberia – the Orulgan medium-altitude mountain landscape province. These technologies allowed us to distinguish a number of mapping units that were used for creation and analysis of 1:100 000 scale vegetation map of the interpreted key area. Based on the studies, we decided upon the basic principles, approaches and technologies that would serve as a methodology basis for the further studies of vegetation cover of the large region. Relief, slope aspect, genetic types of sediments, and moisture conditions were selected as supplementary factors to the vegetative indices for differentiation of both plant communities and vegetation map units.


2021 ◽  
Vol 24 (2-3) ◽  
pp. 108-111
Author(s):  
A.S. Veliky ◽  
G.S. Tkachuk

The authors present vegetation characteristics of the Selgon and Harpi rivers isolated remnant upland. It was compiled a vegetation map of six plant associations with a predominance of forest-type vegetation. The authors revealed the factors determining the upland flora diversity.


2020 ◽  
Vol 51 (3) ◽  
pp. 219-228
Author(s):  
Le WANG ◽  
Lei DONG ◽  
TianYu HU ◽  
Ke GUO
Keyword(s):  

2020 ◽  
pp. 24-38
Author(s):  
I. G. Borisova

The Norsky State Nature Reserve is located in Selemdzhinsky district of the Amurskaya oblast. Its area is 211 168 ha. Currently the flora of the Norsky Nature Reserve is studied in details. A species list has been published and an analysis of the flora has been made (Starchenko, Chuvasheva, 1993; Veklich, 2009). The vegetation cover is poorly studied; so far no geobotanical map of the Reserve has been compiled. Only the overview map (scale 1 : 2 500 000) of the vegetation of the Amur basin (1969) gives an idea of the vegetation as a whole. The climatic characteristics of the territory and the complex relief determine the diversity of plant habitats and their communities. The climate of the Norsky Reserve is continental with monsoon features and even ultracontinental (after A. I. Kaigorodov (1955). The modern relief of the Reserve includes wide floodplains of Nora and Selemdzha rivers, accumulative delta-terraces plain, Norskaya accumulative denudation plain (Geomorphologiya..., 1973) and hills. According to the latest botanical and geographical zoning of the Amurskaya oblast, the Norsky Reserve belongs to the Mamynskiy and Ulmsko-Aldikonskiy districts of the Turan-Mamyn province of the Manchurian subdistrict of the East Asian area (Borisova,Starchenko, 2018). The province belongs to southern taiga with some elements of nemoral forests (Quercus mongolica, Tilia amurensis and etc.) along the valleys of Selemdzha River and its major tributaries. The southern taiga includes different larch forests (often disturbed), derived birch-larch forests with Pinus sylvestris, Picea ajanensis and Abies nephrolepis. The presence of nemoral species in forest cenoses increases in the direction from north to south. A province peculiarity is the wide distribution of larch peatmoss forests, swamps and wet meadows. The scientific-reference typological map of vegetation on a medium scale (1 : 300 000) was compiled for the Norsky Nature Reserve for the first time. It shows spatial patterns of vegetation distribution in connection with the natural features of the territory (Fig. 5). The vegetation map legend is based on an ecologic and phytocoenotic classification. A zonal distribution of plant communities is presented in the legend. Plant communities are divided into some categories: dark-coniferous, light-coniferous and derived forests, which are represented as formations. The main cartographic units are groups of associations and their various combinations. The legend shows the vegetation of floodplains, rocks, and disturbed areas. Vegetation divisions are represented on the vegetation map by seventeen colors and one extra scale sign. All symbols have their own serial number, which is marked in the map legend. The largest areas on the territory of the Reserve are occupied by larch forests — 42 % (Fig. 6). The forested territory as a whole occupies 36.5 %, of which the largest areas are rhododendron larch (9.7 %) and floodplain (9.5 %) forests. Ledum larch and moss-shrub forests occupy 5.7 %. Larch mixed-grass-shrub forests cover some small areas (2.0 %). Sub-taiga larch forests with nemoral grasses and often with oak and black birch trees occupy 0.6 %. Pine and larch-pine forests extend 1.3 % of the Reserve’s area. Fir-spruce forests on watersheds have limited distribution — about 1 %. They are a chain of ecologic-dynamic series on floodplain occupying 2.7 % of the Reserve’s area. To conclude, the vegetation cover of the Norsky Nature Reserve reflects the zonal and provincial features of the territory.


Sign in / Sign up

Export Citation Format

Share Document