Analysis of wave propagation and soil–structure interaction using a perfectly matched layer model

2016 ◽  
Vol 81 ◽  
pp. 1-13 ◽  
Author(s):  
Josif Josifovski
Author(s):  
Dong Van Nguyen ◽  
Jaemin Kim

Perfectly matched layer (PML) is known as one of the best methods to simulate infinite domains in many fields such as soil-structure interaction (SSI). The performance of PML is significantly affected by PML parameters selection. However, the way to select PML parameters still remains unclear. This study proposes a method for PML parameters determination for elastic wave propagation in two-dimensional (2D) media. The scaling and attenuation functions are developed in order to increase the accuracy and effectiveness of the PML. The proposed scheme is applied for a mixed PML in time domain. The finite element method (FEM) formulations of the PML are presented so that it can be easily applied to the existing codes. ABAQUS, a popular FEM code, is used for numerical applications in this study. The proposed PML is imported into ABAQUS by using a user-defined element (UEL) written in Fortran language. Six numerical analyses of SSI are implemented to prove the efficiency of the proposed PML. The numerical analyses cover many realistic problems, including free field, surface structure, and embedded structure problems. The results demonstrate the efficiency of the proposed PML in terms of the accuracy and computational cost.


2016 ◽  
Vol 10 (05) ◽  
pp. 1640014 ◽  
Author(s):  
Tomoshi Miyamura ◽  
Seizo Tanaka ◽  
Muneo Hori

In the present study, a large-scale seismic response analysis of a super-high-rise steel frame considering the soil–structure interaction is conducted. A high-fidelity mesh of a 31-story super-high-rise steel frame and the ground underneath it, which is made completely of hexahedral elements, is generated. The boundary conditions that are consistent with the solution of the one-dimensional (1D) wave propagation analysis are imposed on the side and bottom surfaces of the ground. The waves are assumed to propagate in the vertical direction. The 1D wave propagation analysis is conducted under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake. The parallel large-scale analysis is performed using the K computer, which is one of the fastest supercomputers in the world. The results of the models with and without the ground are compared, which reveals that the results obtained by these two models are very similar because the ground is assumed be sufficiently hard in the present study.


Sign in / Sign up

Export Citation Format

Share Document