An Efficient Mixed Finite Element Perfectly Matched Layer with Optimal Parameters Selection for Two-Dimensional Time Domain Soil-Structure Interaction Analysis

Author(s):  
Dong Van Nguyen ◽  
Jaemin Kim

Perfectly matched layer (PML) is known as one of the best methods to simulate infinite domains in many fields such as soil-structure interaction (SSI). The performance of PML is significantly affected by PML parameters selection. However, the way to select PML parameters still remains unclear. This study proposes a method for PML parameters determination for elastic wave propagation in two-dimensional (2D) media. The scaling and attenuation functions are developed in order to increase the accuracy and effectiveness of the PML. The proposed scheme is applied for a mixed PML in time domain. The finite element method (FEM) formulations of the PML are presented so that it can be easily applied to the existing codes. ABAQUS, a popular FEM code, is used for numerical applications in this study. The proposed PML is imported into ABAQUS by using a user-defined element (UEL) written in Fortran language. Six numerical analyses of SSI are implemented to prove the efficiency of the proposed PML. The numerical analyses cover many realistic problems, including free field, surface structure, and embedded structure problems. The results demonstrate the efficiency of the proposed PML in terms of the accuracy and computational cost.

Author(s):  
J. Rama Raju Patchamatla ◽  
P. K. Emani

Soil-structure-interaction (SSI) analyses are essential to evaluate the seismic performance of important structures before finalizing their structural design. SSI under seismic condition involves much more complex interaction with soil compared to the dynamic loads having source on the structure. Seismic SSI analysis requires due consideration of site-specific and structure-specific properties to estimate the actual ground motion (scattered motion) experienced at the base of the structure, and subsequently the effects of the scattered motion on the structure. Most challenging aspect of seismic SSI analysis is to implement transmitting boundaries that absorb the artificial reflections of stress waves at the truncated interface of the finite and infinite domains, while allowing the seismic waves to enter the finite domain. In this paper, the time domain implementation of seismic analysis of a soil-structure system is presented using classical discrete models of structure and interactive force boundary conditions for soil. These models represent typical SSI systems- a single Degree of Freedom (DOF) of a spherical cavity with mass attached to its wall, a two DOF system consisting of a mass attached by a nonlinear spring to a semi-infinite rod on elastic foundation, and a three DOF system with additional DOFs for modelling the structural stiffness and damping. The convolution integral representing the force boundary condition on the truncated interface, is evaluated interactively using UAMP user-subroutine in ABAQUS and applied as concentrated forces at the interface (truncated interface) nodes of the bounded domain or generalized-structure domain. The verification problems presented in the paper show the satisfactory performance of the developed MATLAB code and ABAQUS implementation with FORTRAN user-subroutines. The classical phenomena associated with the dynamic soil-structure systems are discussed through the present work.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Sanaz Mahmoudpour ◽  
Reza Attarnejad ◽  
Cambyse Behnia

Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document