scholarly journals Three-dimensional P- and S-wave velocity profiling of geotechnical sites using full-waveform inversion driven by field data

2016 ◽  
Vol 87 ◽  
pp. 63-81 ◽  
Author(s):  
Arash Fathi ◽  
Babak Poursartip ◽  
Kenneth H. Stokoe II ◽  
Loukas F. Kallivokas
Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B311-B324 ◽  
Author(s):  
Laura Gassner ◽  
Tobias Gerach ◽  
Thomas Hertweck ◽  
Thomas Bohlen

Evidence for gas-hydrate occurrence in the Western Black Sea is found from seismic measurements revealing bottom-simulating reflectors (BSRs) of varying distinctness. From an ocean-bottom seismic data set, low-resolution traveltime-tomography models of P-wave velocity [Formula: see text] are constructed. They serve as input for acoustic full-waveform inversion (FWI), which we apply to derive high-resolution parameter models aiding the interpretation of the seismic data for potential hydrate and gas deposits. Synthetic tests indicate the applicability of the FWI approach to robustly reconstruct [Formula: see text] models with a typical hydrate and gas signature. Models of S-wave velocity [Formula: see text] containing a hydrate signature can only be reconstructed when the parameter distribution of [Formula: see text] is already well-known. When we add noise to the modeled data to simulate field-data conditions, it prevents the reconstruction of [Formula: see text] completely, justifying the application of an acoustic approach. We invert for [Formula: see text] models from field data of two parallel profiles of 14 km length with a distance of 1 km. Results indicate a characteristic velocity trend for hydrate and gas occurrence at BSR depth in the first of the analyzed profiles. We find no indications for gas accumulations below the BSR on the second profile and only weak indications for hydrate. These differences in the [Formula: see text] signature are consistent with the reflectivity behavior of the migrated seismic streamer data of both profiles in which a zone of high-reflectivity amplitudes is coincident with the potential gas zone derived from the FWI result. Calculating saturation estimates for the potential hydrate and gas zones yields values of up to 30% and 1.2%, respectively.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. R109-R117 ◽  
Author(s):  
Lisa Groos ◽  
Martin Schäfer ◽  
Thomas Forbriger ◽  
Thomas Bohlen

The S-wave velocity of the shallow subsurface can be inferred from shallow-seismic Rayleigh waves. Traditionally, the dispersion curves of the Rayleigh waves are inverted to obtain the (local) S-wave velocity as a function of depth. Two-dimensional elastic full-waveform inversion (FWI) has the potential to also infer lateral variations. We have developed a novel workflow for the application of 2D elastic FWI to recorded surface waves. During the preprocessing, we apply a line-source simulation (spreading correction) and perform an a priori estimation of the attenuation of waves. The iterative multiscale 2D elastic FWI workflow consists of the preconditioning of the gradients in the vicinity of the sources and a source-wavelet correction. The misfit is defined by the least-squares norm of normalized wavefields. We apply our workflow to a field data set that has been acquired on a predominantly depth-dependent velocity structure, and we compare the reconstructed S-wave velocity model with the result obtained by a 1D inversion based on wavefield spectra (Fourier-Bessel expansion coefficients). The 2D S-wave velocity model obtained by FWI shows an overall depth dependency that agrees well with the 1D inversion result. Both models can explain the main characteristics of the recorded seismograms. The small lateral variations in S-wave velocity introduced by FWI additionally explain the lateral changes of the recorded Rayleigh waves. The comparison thus verifies the applicability of our 2D FWI workflow and confirms the potential of FWI to reconstruct shallow small-scale lateral changes of S-wave velocity.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. R247-R259 ◽  
Author(s):  
Yuwei Wang ◽  
Liangguo Dong ◽  
Yuzhu Liu ◽  
Jizhong Yang

Elastic full-waveform inversion (EFWI) of multicomponent seismic data is a powerful tool for estimating the subsurface elastic parameters with high accuracy. However, the trade-offs between multiple parameters increase the nonlinearity of EFWI. Although the conventional diagonal-approximate Hessian matrix describes the illumination and limited bandwidth effects, it ignores the trade-off effects and decreases the convergence rate of EFWI. We have developed a block-diagonal pseudo-Hessian operator for 2D frequency-domain EFWI to take into account the approximate trade-offs among the P-wave (compressional-wave) velocity, S-wave (shear-wave) velocity, and density without extra computational costs on forward simulations. The Hessian matrix tends toward a block-diagonal matrix as the frequency grows to infinity; thus, the proposed block-diagonal pseudo-Hessian matrix is more accurate at higher frequencies. The inverse of the block-diagonal pseudo-Hessian matrix is used as a preconditioner for the nonlinear conjugate-gradient method to simultaneously reconstruct P- and S-wave velocities and density. This approach effectively mitigates the crosstalk artifacts by correcting the gradients from the trade-off effects and produces more rapid inversion convergence, which becomes more significant at higher frequencies. Synthetic experiments on an inclusion model and the elastic Marmousi2 model demonstrate its feasibility and validity in EFWI.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Rebekka Mecking ◽  
Daniel Köhn ◽  
Matthias Meinecke ◽  
Wolfgang Rabbel

The detection of cavities with geophysical methods is a challenging task for which a general approach has not yet been found. We show that viscoelastic SH full waveform inversion (FWI), focusing primarily on reflection events, is able to accurately locate the position of cavities, areas of decompacted sediments and, more generally, seismic low-velocity anomalies down to 30 m depth. The key for a successful FWI application is the enhancement of the reflected wavefield relative to the surface wavefield. For this purpose, we applied automatic gain control normalization in the objective function. By focusing the inversion on the reflected wavefield, we demonstrate that one can differentiate between air-filled cavities with zero shear-wave velocity and low-velocity zones. Additionally, we test the FWI approach on a field dataset, with a known collapsed tunnel system inside a 32 m high, monumental, antique grave mound. The results show that the location and extent, as well as density and S-wave velocity of the collapsed tunnel system, can be determined with sufficient accuracy by applying a 2D FWI approach to intersecting profiles, despite the 3D nature of the problem.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R185-R206 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yu Geng ◽  
Junxiao Li

Simultaneous determination of multiple physical parameters using full-waveform inversion (FWI) suffers from interparameter trade-off difficulties. Analyzing the interparameter trade-offs in different model parameterizations of isotropic-elastic FWI, and thus determining the appropriate model parameterization, are critical for efficient inversion and obtaining reliable inverted models. Five different model parameterizations are considered and compared including velocity-density, modulus-density, impedance-density, and two velocity-impedance parameterizations. The scattering radiation patterns are first used for interparameter trade-off analysis. Furthermore, a new framework is developed to evaluate the interparameter trade-off based upon multiparameter Hessian-vector products: Multiparameter point spread functions (MPSFs) and interparameter contamination sensitivity kernels (ICSKs), which provide quantitative, second-order measurements of the interparameter contaminations. In the numerical experiments, the interparameter trade-offs in various model parameterizations are evaluated using the MPSFs and ICSKs. Inversion experiments are carried out with simple Gaussian-anomaly models and a complex Marmousi model. Overall, the parameterization of the P-wave velocity, S-wave velocity, and density, and the parameterization of the P-wave velocity, S-wave velocity, and S-wave impedance perform best for reconstructing all of the physical parameters. Isotropic-elastic FWI of the Hussar low-frequency data set with various model parameterizations verifies our conclusions.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. R109-R119 ◽  
Author(s):  
Timothy J. Sears ◽  
Penny J. Barton ◽  
Satish C. Singh

Elastic full waveform inversion of multichannel seismic data represents a data-driven form of analysis leading to direct quantification of the subsurface elastic parameters in the depth domain. Previous studies have focused on marine streamer data using acoustic or elastic inversion schemes for the inversion of P-wave data. In this paper, P- and S-wave velocities are inverted for using wide-angle multicomponent ocean-bottom cable (OBC) seismic data. Inversion is undertaken using a two-dimensional elastic algorithm operating in the time domain, which allows accurate modeling and inversion of the full elastic wavefield, including P- and mode-converted PS-waves and their respective amplitude variation with offset (AVO) responses. Results are presented from the application of this technique to an OBC seismic data set from the Alba Field, North Sea. After building an initial velocity model and extracting a seismic wavelet, the data are inverted instages. In the first stage, the intermediate wavelength P-wave velocity structure is recovered from the wide-angle data and then the short-scale detail from near-offset data using P-wave data on the [Formula: see text] (vertical geophone) component. In the second stage, intermediate wavelengths of S-wave velocity are inverted for, which exploits the information captured in the P-wave’s elastic AVO response. In the third stage, the earlier models are built on to invert mode-converted PS-wave events on the [Formula: see text] (horizontal geophone) component for S-wave velocity, targeting first shallow and then deeper structure. Inversion of [Formula: see text] alone has been able to delineate the Alba Field in P- and S-wave velocity, with the main field and outlier sands visible on the 2D results. Inversion of PS-wave data has demonstrated the potential of using converted waves to resolve shorter wavelength detail. Even at the low frequencies [Formula: see text] inverted here, improved spatial resolution was obtained by inverting S-wave data compared with P-wave data inversion results.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC105-WCC118 ◽  
Author(s):  
Romain Brossier ◽  
Stéphane Operto ◽  
Jean Virieux

Quantitative imaging of the elastic properties of the subsurface at depth is essential for civil engineering applications and oil- and gas-reservoir characterization. A realistic synthetic example provides for an assessment of the potential and limits of 2D elastic full-waveform inversion (FWI) of wide-aperture seismic data for recovering high-resolution P- and S-wave velocity models of complex onshore structures. FWI of land data is challenging because of the increased nonlinearity introduced by free-surface effects such as the propagation of surface waves in the heterogeneous near-surface. Moreover, the short wavelengths of the shear wavefield require an accurate S-wave velocity starting model if low frequencies are unavailable in the data. We evaluated different multiscale strategies with the aim of mitigating the nonlinearities. Massively parallel full-waveform inversion was implemented in the frequency domain. The numerical optimization relies on a limited-memory quasi-Newton algorithm thatoutperforms the more classic preconditioned conjugate-gradient algorithm. The forward problem is based upon a discontinuous Galerkin (DG) method on triangular mesh, which allows accurate modeling of free-surface effects. Sequential inversions of increasing frequencies define the most natural level of hierarchy in multiscale imaging. In the case of land data involving surface waves, the regularization introduced by hierarchical frequency inversions is not enough for adequate convergence of the inversion. A second level of hierarchy implemented with complex-valued frequencies is necessary and provides convergence of the inversion toward acceptable P- and S-wave velocity models. Among the possible strategies for sampling frequencies in the inversion, successive inversions of slightly overlapping frequency groups is the most reliable when compared to the more standard sequential inversion of single frequencies. This suggests that simultaneous inversion of multiple frequencies is critical when considering complex wave phenomena.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. R247-R261 ◽  
Author(s):  
Lisa Groos ◽  
Martin Schäfer ◽  
Thomas Forbriger ◽  
Thomas Bohlen

Full-waveform inversion (FWI) of Rayleigh waves is attractive for shallow geotechnical investigations due to the high sensitivity of Rayleigh waves to the S-wave velocity structure of the subsurface. In shallow-seismic field data, the effects of anelastic damping are significant. Dissipation results in a low-pass effect as well as frequency-dependent decay with offset. We found this by comparing recorded waveforms with elastic and viscoelastic wave simulation. The effects of anelastic damping must be considered in FWI of shallow-seismic Rayleigh waves. FWI using elastic simulation of wave propagation failed in synthetic inversion tests in which we tried to reconstruct the S-wave velocity in a viscoelastic model. To overcome this, [Formula: see text]-values can be estimated from the recordings to quantify viscoelasticity. Waveform simulation in the FWI then uses these a priori values when inferring seismic velocities and density. A source-wavelet correction, which is inevitable in FWI of field data, can compensate a significant fraction of the residuals between elastically and viscoelastically simulated data by narrowing the signals’ bandwidth. This way, elastic simulation becomes applicable in FWI of data from anelastic media. This approach, however, was not able to produce a frequency-dependent amplitude decay with offset. Reconstruction, therefore, was more accurate when using appropriate viscoelastic modeling in FWI of shallow-seismic Rayleigh waves. We found this by synthetic inversion tests using elastic forward simulation as well as viscoelastic simulation with different a priori values for [Formula: see text].


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. B87-B107 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yanfei Wang

Elastic full-waveform inversion (FWI) in transversely isotropic media with a vertical symmetry axis (VTI) is applied to field walk-away vertical seismic profile (W-VSP) data acquired in Western Canada. The performance of VTI-elastic FWI is significantly influenced by the model parameterization choice. Synthetic analysis based on specific field survey configuration is carried out to evaluate three different VTI-elastic model parameterizations. Interparameter trade-offs are quantified using the recently introduced interparameter contamination sensitivity kernel approach. Synthetic results suggest that neglecting anisotropy leads to inaccurate velocity estimations. For the conventional vertical velocity-Thomsen’s parameter parameterization (i.e., vertical P-wave velocity, vertical S-wave velocity, Thomsen’s parameters [Formula: see text] and [Formula: see text]), a sequential inversion strategy is designed to reduce strong natural interparameter trade-offs. The model parameterizations of elastic-constant ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) and velocity-based (vertical, horizontal, and normal move-out P-wave velocities and vertical S-wave velocity) models appear to suffer from fewer interparameter trade-offs, providing more reliable velocity and anisotropy models. Results derived from application of VTI-elastic FWI to the field W-VSP data set tend to support the synthetic conclusions. Multiparameter point spread functions are calculated to quantify the local interparameter trade-offs of the inverted models. The output inversion results are interpreted to provide valuable references regarding the target hydrocarbon reservoir.


Sign in / Sign up

Export Citation Format

Share Document