scholarly journals Nonstationary seismic response analysis of long-span structures by frequency domain method considering wave passage effect

2018 ◽  
Vol 109 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Zhao ◽  
Yuyin Li ◽  
Yahui Zhang ◽  
David Kennedy
2012 ◽  
Vol 204-208 ◽  
pp. 2157-2161 ◽  
Author(s):  
Zhang Jun Liu ◽  
Yan Fu Xing ◽  
Yong Wan

Based on the orthogonal expansion method of stochastic processes, seismic acceleration processes can be represented as a linear combination of deterministic functions modulated by a set of mutually independent random variables. In conjunction with the probability density evolution method, the random seismic response of bridge structures can be successfully researched. A long-span bridge structure is taken as an example. The probabilistic information of the response of a long-span bridge structure in different control under earthquake excitations is investigated. The investigation provides a new approach to the random seismic response analysis of long-span bridge structures.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Li Tian ◽  
Yanming Wang ◽  
Zhenhua Yi ◽  
Hui Qian

A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures.


Sign in / Sign up

Export Citation Format

Share Document